13,590 research outputs found

    Whether and Where to Code in the Wireless Relay Channel

    Full text link
    The throughput benefits of random linear network codes have been studied extensively for wirelined and wireless erasure networks. It is often assumed that all nodes within a network perform coding operations. In energy-constrained systems, however, coding subgraphs should be chosen to control the number of coding nodes while maintaining throughput. In this paper, we explore the strategic use of network coding in the wireless packet erasure relay channel according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. In addition to transmission energy, we take into account coding and reception energies. We show that coding at the relay alone while operating in a rateless fashion is neither throughput nor energy efficient. Given a set of system parameters, our analysis determines the optimal amount of time the relay should participate in the transmission, and where coding should be performed.Comment: 11 pages, 12 figures, to be published in the IEEE JSAC Special Issue on Theories and Methods for Advanced Wireless Relay

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Energy Efficiency of Network Cooperation for Cellular Uplink Transmissions

    Full text link
    There is a growing interest in energy efficient or so-called "green" wireless communication to reduce the energy consumption in cellular networks. Since today's wireless terminals are typically equipped with multiple network access interfaces such as Bluetooth, Wi-Fi, and cellular networks, this paper investigates user terminals cooperating with each other in transmitting their data packets to a base station (BS) by exploiting the multiple network access interfaces, referred to as inter-network cooperation, to improve the energy efficiency in cellular uplink transmission. Given target outage probability and data rate requirements, we develop a closed-form expression of energy efficiency in Bits-per-Joule for the inter-network cooperation by taking into account the path loss, fading, and thermal noise effects. Numerical results show that when the cooperating users move towards to each other, the proposed inter-network cooperation significantly improves the energy efficiency as compared with the traditional non-cooperation and intra-network cooperation. This implies that given a certain amount of bits to be transmitted, the inter-network cooperation requires less energy than the traditional non-cooperation and intra-network cooperation, showing the energy saving benefit of inter-network cooperation.Comment: in Proceedings of the 2013 IEEE International Conference on Communications (IEEE ICC 2013), Budapest, Hungary, June 201
    corecore