2 research outputs found

    Augmented interaction for custom-fit products by means of interaction devices at low costs

    Get PDF
    This Ph.D thesis refers to a research project that aims at developing an innovative platform to design lower limb prosthesis (both for below and above knee amputation) centered on the virtual model of the amputee and based on a computer-aided and knowledge-guided approach. The attention has been put on the modeling tool of the socket, which is the most critical component of the whole prosthesis. The main aim has been to redesign and develop a new prosthetic CAD tool, named SMA2 (Socket Modelling Assistant2) exploiting a low-cost IT technologies (e.g. hand/finger tracking devices) and making the user’s interaction as much as possible natural and similar to the hand-made manipulation. The research activities have been carried out in six phases as described in the following. First, limits and criticalities of the already available modeling tool (namely SMA) have been identified. To this end, the first version of SMA has been tested with Ortopedia Panini and the orthopedic research group of Salford University in Manchester with real case studies. Main criticalities were related to: (i) automatic reconstruction of the residuum geometric model starting from medical images, (ii) performance of virtual modeling tools to generate the socket shape, and (iii) interaction mainly based on traditional devices (e.g., mouse and keyboard). The second phase lead to the software reengineering of SMA according to the limits identified in the first phase. The software architecture has been re-designed adopting an object-oriented paradigm and its modularity permits to remove or add new features in a very simple way. The new modeling system, i.e. SMA2, has been totally implemented using open source Software Development Kit-SDK (e.g., Visualization ToolKit VTK, OpenCASCADE and Qt SDK) and based on low cost technology. It includes: • A new module to automatically reconstruct the 3D model of the residual limb from MRI images. In addition, a new procedure based on low-cost technology, such as Microsoft Kinect V2 sensor, has been identified to acquire the 3D external shape of the residuum. • An open source software library, named SimplyNURBS, for NURBS modeling and specifically used for the automatic reconstruction of the residuum 3D model from medical images. Even if, SimplyNURBS has been conceived for the prosthetic domain, it can be used to develop NURBS-based modeling tools for a range of applicative domains from health-care to clothing design. • A module for mesh editing to emulate the hand-made operations carried out by orthopedic technicians during traditional socket manufacturing process. In addition several virtual widgets have been implemented to make available virtual tools similar to the real ones used by the prosthetist, such as tape measure and pencil. • A Natural User Interface (NUI) to allow the interaction with the residuum and socket models using hand-tracking and haptic devices. • A module to generate the geometric models for additive manufacturing of the socket. The third phase concerned the study and design of augmented interaction with particular attention to the Natural User Interface (NUI) for the use of hand-tracking and haptic devices into SMA2. The NUI is based on the use of the Leap Motion device. A set of gestures, mainly iconic and suitable for the considered domain, has been identified taking into account ergonomic issues (e.g., arm posture) and ease of use. The modularity of SMA2 permits us to easily generate the software interface for each device for augmented interaction. To this end, a software module, named Tracking plug-in, has been developed to automatically generate the source code of software interfaces for managing the interaction with low cost hand-tracking devices (e.g., Leap Motion and Intel Gesture Camera) and replicate/emulate manual operations usually performed to design custom-fit products, such medical devices and garments. Regarding haptic rendering, two different devices have been considered, the Falcon Novint, and a haptic mouse developed in-house. In the fourth phase, additive manufacturing technologies have been investigated, in particular FDM one. 3D printing has been exploited in order to permit the creation of trial sockets in laboratory to evaluate the potentiality of SMA2. Furthermore, research activities have been done to study new ways to design the socket. An innovative way to build the socket has been developed based on multi-material 3D printing. Taking advantage of flexible material and multi-material print possibility, new 3D printers permit to create object with soft and hard parts. In this phase, issues about infill, materials and comfort have been faced and solved considering different compositions of materials to re-design the socket shape. In the fifth phase the implemented solution, integrated within the whole prosthesis design platform, has been tested with a transfemoral amputee. Following activities have been performed: • 3D acquisition of the residuum using MRI and commercial 3D scanning systems (low cost and professional). • Creation of the residual limb and socket geometry. • Multi-material 3D printing of the socket using FDM technology. • Gait analysis of the amputee wearing the socket using a markerless motion capture system. • Acquisition of contact pressure between residual limb and a trial socket by means of Teskan’s F-Socket System. Acquired data have been combined inside an ad-hoc developed application, which permits to simultaneously visualize pressure data on the 3D model of the residual lower limb and the animation of gait analysis. Results and feedback have been possible thanks to this application that permits to find correlation between several phases of the gait cycle and the pressure data at the same time. Reached results have been considered very interested and several tests have been planned in order to try the system in orthopedic laboratories in real cases. The reached results have been very useful to evaluate the quality of SMA2 as a future instruments that can be exploited for orthopedic technicians in order to create real socket for patients. The solution has the potentiality to begin a potential commercial product, which will be able to substitute the classic procedure for socket design. The sixth phase concerned the evolution of SMA2 as a Mixed Reality environment, named Virtual Orthopedic LABoratory (VOLAB). The proposed solution is based on low cost devices and open source libraries (e.g., OpenCL and VTK). In particular, the hardware architecture consists of three Microsoft Kinect v2 for human body tracking, the head mounted display Oculus Rift SDK 2 for 3D environment rendering, and the Leap Motion device for hand/fingers tracking. The software development has been based on the modular structure of SMA2 and dedicated modules have been developed to guarantee the communication among the devices. At present, two preliminary tests have been carried out: the first to verify real-time performance of the virtual environment and the second one to verify the augmented interaction with hands using SMA2 modeling tools. Achieved results are very promising but, highlighted some limitations of this first version of VOLAB and improvements are necessary. For example, the quality of the 3D real world reconstruction, especially as far as concern the residual limb, could be improved by using two HD-RGB cameras together the Oculus Rift. To conclude, the obtained results have been evaluated very interested and encouraging from the technical staff of orthopedic laboratory. SMA2 will made possible an important change of the process to design the socket of lower limb prosthesis, from a traditional hand-made manufacturing process to a totally virtual knowledge-guided process. The proposed solutions and results reached so far can be exploited in other industrial sectors where the final product heavily depends on the human body morphology. In fact, preliminary software development has been done to create a virtual environment for clothing design by starting from the basic modules exploited in SMA2
    corecore