13,309 research outputs found

    An empirical Bayes procedure for the selection of Gaussian graphical models

    Full text link
    A new methodology for model determination in decomposable graphical Gaussian models is developed. The Bayesian paradigm is used and, for each given graph, a hyper inverse Wishart prior distribution on the covariance matrix is considered. This prior distribution depends on hyper-parameters. It is well-known that the models's posterior distribution is sensitive to the specification of these hyper-parameters and no completely satisfactory method is registered. In order to avoid this problem, we suggest adopting an empirical Bayes strategy, that is a strategy for which the values of the hyper-parameters are determined using the data. Typically, the hyper-parameters are fixed to their maximum likelihood estimations. In order to calculate these maximum likelihood estimations, we suggest a Markov chain Monte Carlo version of the Stochastic Approximation EM algorithm. Moreover, we introduce a new sampling scheme in the space of graphs that improves the add and delete proposal of Armstrong et al. (2009). We illustrate the efficiency of this new scheme on simulated and real datasets

    Flexible covariance estimation in graphical Gaussian models

    Full text link
    In this paper, we propose a class of Bayes estimators for the covariance matrix of graphical Gaussian models Markov with respect to a decomposable graph GG. Working with the WPGW_{P_G} family defined by Letac and Massam [Ann. Statist. 35 (2007) 1278--1323] we derive closed-form expressions for Bayes estimators under the entropy and squared-error losses. The WPGW_{P_G} family includes the classical inverse of the hyper inverse Wishart but has many more shape parameters, thus allowing for flexibility in differentially shrinking various parts of the covariance matrix. Moreover, using this family avoids recourse to MCMC, often infeasible in high-dimensional problems. We illustrate the performance of our estimators through a collection of numerical examples where we explore frequentist risk properties and the efficacy of graphs in the estimation of high-dimensional covariance structures.Comment: Published in at http://dx.doi.org/10.1214/08-AOS619 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hierarchically-coupled hidden Markov models for learning kinetic rates from single-molecule data

    Full text link
    We address the problem of analyzing sets of noisy time-varying signals that all report on the same process but confound straightforward analyses due to complex inter-signal heterogeneities and measurement artifacts. In particular we consider single-molecule experiments which indirectly measure the distinct steps in a biomolecular process via observations of noisy time-dependent signals such as a fluorescence intensity or bead position. Straightforward hidden Markov model (HMM) analyses attempt to characterize such processes in terms of a set of conformational states, the transitions that can occur between these states, and the associated rates at which those transitions occur; but require ad-hoc post-processing steps to combine multiple signals. Here we develop a hierarchically coupled HMM that allows experimentalists to deal with inter-signal variability in a principled and automatic way. Our approach is a generalized expectation maximization hyperparameter point estimation procedure with variational Bayes at the level of individual time series that learns an single interpretable representation of the overall data generating process.Comment: 9 pages, 5 figure
    • …
    corecore