4,960 research outputs found

    Field Inhomogeneity Compensation in High Field Magnetic Resonance Imaging (MRI)

    Get PDF
    This thesis concentrates on the reduction of field (both main field B0 and RF field B1) inhomogeneity in MRI, especially at high B0 field. B0 and B1 field inhomogeneity are major hindrances in high B0 field MRI applications. B1 inhomogeneity will lead to spatially varying signal intensity in the MR images. B0 inhomogeneity produces blurring, distortion and signal loss at tissue interfaces. B0 artifacts are usually termed off-resonance or susceptibility artifacts. None of the existing methods can perfectly correct these inhomogeneity artifacts.This thesis aims at developing three-dimensional (3D) tailored RF (TRF) pulses to mitigate these artifacts. A current limitation in the use of 3D TRF techniques, however, is that pulses are often too long for practical clinical applications. Multiple transmission techniques are proposed to decrease pulse lengths and provide an inherent correction for B1 inhomogeneity. Shorter pulses are also more robust to profile distortions from susceptibility effects.Specifically, slice-selective 3D TRF pulses for multiple (or ¡°parallel¡±) transmitters were designed and validated in uniform phantom and human brain experiments at 3 Tesla. A pseudo-transmit sensitivity encoding (¡°transmit SENSE¡±) method was introduced using a body coil transmitter and multiple receivers to mimic the real parallel transmitter experiment. The kz-direction was controlled by fast switching of gradients in a fashion similar to Echo planar imaging (EPI). The transverse plane (kx-ky) was sampled sparsely with hexagonal trajectories, and accelerated with the transmit SENSE method. The transmit SENSE 3D TRF pulses reduced the B1 inhomogeneity compared to standard SINC pulses in human brain scans. The undersampled transmit SENSE pulses were only 4.3ms long and could excite a 5mm thick slice, which is very promising for clinical applications. Furthermore, these pulses are shown by numerical simulation to have promise in correcting through-plane susceptibility artifacts

    Evaluation of a Subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3T

    Get PDF
    BACKGROUND: Radiofrequency (RF) shading artifacts degrade image quality while performing cardiovascular magnetic resonance (CMR) at higher field strengths. In this article, we sought to evaluate the effect of local RF (B(1) field) shimming by using a dual-source–transmit RF system for cardiac cine imaging and to systematically evaluate the effect of subject body type on the B(1) field with and without local RF shimming. METHODS: We obtained cardiac images from 37 subjects (including 11 patients) by using dual-transmit 3T CMR. B(1) maps with and without subject-specific local RF shimming (exploiting the independent control of transmit amplitude and phase of the 2 RF transmitters) were obtained. Metrics quantifying B(1) field homogeneity were calculated and compared with subject body habitus. RESULTS: Local RF shimming across the region encompassed by the heart increased the mean flip angle (μ) in that area (88.5 ± 15.2% vs. 81.2 ± 13.3%; P = 0.0014), reduced the B(1) field variation by 42.2 ± 13%, and significantly improved the percentage of voxels closer to μ (39% and 82% more voxels were closer to ± 10% and ± 5% of μ, respectively) when compared with no RF shimming. B(1) homogeneity was independent of subject body type (body surface area [BSA], body mass index [BMI] or anterior-posterior/right-left patient width ratio [AP/RL]). Subject specific RF (B(1)) shimming with a dual-transmit system improved local RF homogeneity across all body types. CONCLUSION: With or without RF shimming, cardiac B1 field homogeneity does not depend on body type, as characterized by BMI, BSA, and AP/RL. For all body types studied, cardiac B(1) field homogeneity was significantly improved by performing local RF shimming with 2 independent RF-transmit channels. This finding indicates the need for subject-specific RF shimming

    On SDoF of Multi-Receiver Wiretap Channel With Alternating CSIT

    Full text link
    We study the problem of secure transmission over a Gaussian multi-input single-output (MISO) two receiver channel with an external eavesdropper, under the assumption that the state of the channel which is available to each receiver is conveyed either perfectly (PP) or with delay (DD) to the transmitter. Denoting by S1S_1, S2S_2, and S3S_3 the channel state information at the transmitter (CSIT) of user 1, user 2, and eavesdropper, respectively, the overall CSIT can then alternate between eight possible states, i.e., (S1,S2,S3)∈{P,D}3(S_1,S_2,S_3) \in \{P,D\}^3. We denote by λS1S2S3\lambda_{S_1 S_2 S_3} the fraction of time during which the state S1S2S3S_1S_2S_3 occurs. Under these assumptions, we first consider the Gaussian MISO wiretap channel and characterize the secure degrees of freedom (SDoF). Next, we consider the general multi-receiver setup and characterize the SDoF region of fixed hybrid states PPDPPD, PDPPDP, and DDPDDP. We then focus our attention on the symmetric case in which λPDD=λDPD\lambda_{PDD}=\lambda_{DPD}. For this case, we establish bounds on SDoF region. The analysis reveals that alternating CSIT allows synergistic gains in terms of SDoF; and shows that, by opposition to encoding separately over different states, joint encoding across the states enables strictly better secure rates. Furthermore, we specialize our results for the two receivers channel with an external eavesdropper to the two-user broadcast channel. We show that, the synergistic gains in terms of SDoF by alternating CSIT is not restricted to multi-receiver wiretap channels; and, can also be harnessed under broadcast setting.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    7 T renal MRI: challenges and promises

    Get PDF
    The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging

    Advanced methods for mapping the radiofrequency magnetic fields in MRI

    Get PDF
    As MRI systems have increased in static magnetic field strength, the radiofrequency (RF) fields that are used for magnetisation excitation and signal reception have become significantly less uniform. This can lead to image artifacts and errors when performing quantitative MRI. A further complication arises if the RF fields vary substantially in time. In the first part of this investigation temporal variations caused by respiration were explored on a 3T scanner. It was found that fractional changes in transmit field amplitude between inhalation and expiration ranged from 1% to 14% in the region of the liver in a small group of normal subjects. This observation motivated the development of a pulse sequence and reconstruction method to allow dynamic observation of the transmit field throughout the respiratory cycle. However, the proposed method was unsuccessful due to the inherently time-consuming nature of transmit field mapping sequences. This prompted the development of a novel data reconstruction method to allow the acceleration of transmit field mapping sequences. The proposed technique posed the RF field reconstruction as a nonlinear least-squares optimisation problem, exploiting the fact that the fields vary smoothly. It was shown that this approach was superior to standard reconstruction approaches. The final component of this thesis presents a unified approach to RF field calibration. The proposed method uses all measured data to estimate both transmit and receive sensitivities, whilst simultaneously insisting that they are smooth functions of space. The resulting maps are robust to both noise and imperfections in regions of low signal

    Loop radiofrequency coils for clinical magnetic resonance imaging at 7 TESLA

    Get PDF
    To date, the 7 T magnetic resonance imaging (MRI) scanner remains a pure research system and there is still a long way ahead till full clinical integration. Key challenges are the absence of a body transmit radiofrequency (RF) coil as well as of dedicated RF coils in general, short RF wavelengths of the excitation field in the order of the dimensions of a human body leading to signal inhomogeneities, and severe limitations with respect to the specific absorption rate. They all result in a strong need for RF engineering and sequence optimization to explore the potential of MRI at 7 T, and to pave the way for its future clinical application. In this thesis, high-resolution MRI with a rather small field-of-view (FOV) in the head and neck region (parotid gland/duct and carotid arteries), and of the musculoskeletal system as well as with a very large FOV in the abdomen (spine) were presented. Therefore, a variety of RF coils were used: from a commercially available single-loop coil to novel, specially developed phased array coils each consisting of eight loop elements. Methods to thoroughly characterize and test the developed RF coils were presented, including numerical simulations, bench and MRI measurements. Characterization with respect to performance for parallel acquisition techniques and an extensive compliance testing for patient safety were described in detail. All aspects of the engineering part, from design to optimization, and finally, to the in vivo application in volunteers and patients were covered. Since clinical applicability has always been the purpose, optimized imaging protocols along with a discussion on the clinical relevance was included in each study. The presented RF loop coils widely expand the options for clinical research at 7 T and advance the integration of this technology in a clinical setting

    Local multi-channel RF surface coil versus body RF coil transmission for cardiac magnetic resonance at 3 Tesla: which configuration is winning the game?

    Get PDF
    INTRODUCTION: The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS: Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. RESULTS: Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. CONCLUSION: Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants
    • …
    corecore