40 research outputs found

    Validation of Matching

    Full text link
    We introduce a technique to compute probably approximately correct (PAC) bounds on precision and recall for matching algorithms. The bounds require some verified matches, but those matches may be used to develop the algorithms. The bounds can be applied to network reconciliation or entity resolution algorithms, which identify nodes in different networks or values in a data set that correspond to the same entity. For network reconciliation, the bounds do not require knowledge of the network generation process

    Multimodal Network Alignment

    Full text link
    A multimodal network encodes relationships between the same set of nodes in multiple settings, and network alignment is a powerful tool for transferring information and insight between a pair of networks. We propose a method for multimodal network alignment that computes a matrix which indicates the alignment, but produces the result as a low-rank factorization directly. We then propose new methods to compute approximate maximum weight matchings of low-rank matrices to produce an alignment. We evaluate our approach by applying it on synthetic networks and use it to de-anonymize a multimodal transportation network.Comment: 14 pages, 6 figures, Siam Data Mining 201

    Maximum Likelihood Estimation and Graph Matching in Errorfully Observed Networks

    Full text link
    Given a pair of graphs with the same number of vertices, the inexact graph matching problem consists in finding a correspondence between the vertices of these graphs that minimizes the total number of induced edge disagreements. We study this problem from a statistical framework in which one of the graphs is an errorfully observed copy of the other. We introduce a corrupting channel model, and show that in this model framework, the solution to the graph matching problem is a maximum likelihood estimator. Necessary and sufficient conditions for consistency of this MLE are presented, as well as a relaxed notion of consistency in which a negligible fraction of the vertices need not be matched correctly. The results are used to study matchability in several families of random graphs, including edge independent models, random regular graphs and small-world networks. We also use these results to introduce measures of matching feasibility, and experimentally validate the results on simulated and real-world networks
    corecore