68 research outputs found

    An Efficient Parallel Solver for SDD Linear Systems

    Full text link
    We present the first parallel algorithm for solving systems of linear equations in symmetric, diagonally dominant (SDD) matrices that runs in polylogarithmic time and nearly-linear work. The heart of our algorithm is a construction of a sparse approximate inverse chain for the input matrix: a sequence of sparse matrices whose product approximates its inverse. Whereas other fast algorithms for solving systems of equations in SDD matrices exploit low-stretch spanning trees, our algorithm only requires spectral graph sparsifiers

    Simple parallel and distributed algorithms for spectral graph sparsification

    Full text link
    We describe a simple algorithm for spectral graph sparsification, based on iterative computations of weighted spanners and uniform sampling. Leveraging the algorithms of Baswana and Sen for computing spanners, we obtain the first distributed spectral sparsification algorithm. We also obtain a parallel algorithm with improved work and time guarantees. Combining this algorithm with the parallel framework of Peng and Spielman for solving symmetric diagonally dominant linear systems, we get a parallel solver which is much closer to being practical and significantly more efficient in terms of the total work.Comment: replaces "A simple parallel and distributed algorithm for spectral sparsification". Minor change

    Improving information centrality of a node in complex networks by adding edges

    Full text link
    The problem of increasing the centrality of a network node arises in many practical applications. In this paper, we study the optimization problem of maximizing the information centrality IvI_v of a given node vv in a network with nn nodes and mm edges, by creating kk new edges incident to vv. Since IvI_v is the reciprocal of the sum of resistance distance Rv\mathcal{R}_v between vv and all nodes, we alternatively consider the problem of minimizing Rv\mathcal{R}_v by adding kk new edges linked to vv. We show that the objective function is monotone and supermodular. We provide a simple greedy algorithm with an approximation factor (11e)\left(1-\frac{1}{e}\right) and O(n3)O(n^3) running time. To speed up the computation, we also present an algorithm to compute (11eϵ)\left(1-\frac{1}{e}-\epsilon\right)-approximate resistance distance Rv\mathcal{R}_v after iteratively adding kk edges, the running time of which is O~(mkϵ2)\widetilde{O} (mk\epsilon^{-2}) for any ϵ>0\epsilon>0, where the O~()\widetilde{O} (\cdot) notation suppresses the poly(logn){\rm poly} (\log n) factors. We experimentally demonstrate the effectiveness and efficiency of our proposed algorithms.Comment: 7 pages, 2 figures, ijcai-201

    Fast, Accurate Second Order Methods for Network Optimization

    Full text link
    Dual descent methods are commonly used to solve network flow optimization problems, since their implementation can be distributed over the network. These algorithms, however, often exhibit slow convergence rates. Approximate Newton methods which compute descent directions locally have been proposed as alternatives to accelerate the convergence rates of conventional dual descent. The effectiveness of these methods, is limited by the accuracy of such approximations. In this paper, we propose an efficient and accurate distributed second order method for network flow problems. The proposed approach utilizes the sparsity pattern of the dual Hessian to approximate the the Newton direction using a novel distributed solver for symmetric diagonally dominant linear equations. Our solver is based on a distributed implementation of a recent parallel solver of Spielman and Peng (2014). We analyze the properties of the proposed algorithm and show that, similar to conventional Newton methods, superlinear convergence within a neighbor- hood of the optimal value is attained. We finally demonstrate the effectiveness of the approach in a set of experiments on randomly generated networks.Comment: arXiv admin note: text overlap with arXiv:1502.0315

    An SDP-Based Algorithm for Linear-Sized Spectral Sparsification

    Full text link
    For any undirected and weighted graph G=(V,E,w)G=(V,E,w) with nn vertices and mm edges, we call a sparse subgraph HH of GG, with proper reweighting of the edges, a (1+ε)(1+\varepsilon)-spectral sparsifier if (1ε)xLGxxLHx(1+ε)xLGx (1-\varepsilon)x^{\intercal}L_Gx\leq x^{\intercal} L_{H} x\leq (1+\varepsilon) x^{\intercal} L_Gx holds for any xRnx\in\mathbb{R}^n, where LGL_G and LHL_{H} are the respective Laplacian matrices of GG and HH. Noticing that Ω(m)\Omega(m) time is needed for any algorithm to construct a spectral sparsifier and a spectral sparsifier of GG requires Ω(n)\Omega(n) edges, a natural question is to investigate, for any constant ε\varepsilon, if a (1+ε)(1+\varepsilon)-spectral sparsifier of GG with O(n)O(n) edges can be constructed in O~(m)\tilde{O}(m) time, where the O~\tilde{O} notation suppresses polylogarithmic factors. All previous constructions on spectral sparsification require either super-linear number of edges or m1+Ω(1)m^{1+\Omega(1)} time. In this work we answer this question affirmatively by presenting an algorithm that, for any undirected graph GG and ε>0\varepsilon>0, outputs a (1+ε)(1+\varepsilon)-spectral sparsifier of GG with O(n/ε2)O(n/\varepsilon^2) edges in O~(m/εO(1))\tilde{O}(m/\varepsilon^{O(1)}) time. Our algorithm is based on three novel techniques: (1) a new potential function which is much easier to compute yet has similar guarantees as the potential functions used in previous references; (2) an efficient reduction from a two-sided spectral sparsifier to a one-sided spectral sparsifier; (3) constructing a one-sided spectral sparsifier by a semi-definite program.Comment: To appear at STOC'1

    Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time

    Full text link
    We present the first almost-linear time algorithm for constructing linear-sized spectral sparsification for graphs. This improves all previous constructions of linear-sized spectral sparsification, which requires Ω(n2)\Omega(n^2) time. A key ingredient in our algorithm is a novel combination of two techniques used in literature for constructing spectral sparsification: Random sampling by effective resistance, and adaptive constructions based on barrier functions.Comment: 22 pages. A preliminary version of this paper is to appear in proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015
    corecore