24,818 research outputs found

    A Generic Path Algorithm for Regularized Statistical Estimation

    Full text link
    Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution towards prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints lead to the popular lasso, fused-lasso, and other generalized l1l_1 penalized regression methods. Although there has been a lot of research in this area, developing efficient optimization methods for many nonseparable penalties remains a challenge. In this article we propose an exact path solver based on ordinary differential equations (EPSODE) that works for any convex loss function and can deal with generalized l1l_1 penalties as well as more complicated regularization such as inequality constraints encountered in shape-restricted regressions and nonparametric density estimation. In the path following process, the solution path hits, exits, and slides along the various constraints and vividly illustrates the tradeoffs between goodness of fit and model parsimony. In practice, the EPSODE can be coupled with AIC, BIC, CpC_p or cross-validation to select an optimal tuning parameter. Our applications to generalized l1l_1 regularized generalized linear models, shape-restricted regressions, Gaussian graphical models, and nonparametric density estimation showcase the potential of the EPSODE algorithm.Comment: 28 pages, 5 figure

    Robust computation of linear models by convex relaxation

    Get PDF
    Consider a dataset of vector-valued observations that consists of noisy inliers, which are explained well by a low-dimensional subspace, along with some number of outliers. This work describes a convex optimization problem, called REAPER, that can reliably fit a low-dimensional model to this type of data. This approach parameterizes linear subspaces using orthogonal projectors, and it uses a relaxation of the set of orthogonal projectors to reach the convex formulation. The paper provides an efficient algorithm for solving the REAPER problem, and it documents numerical experiments which confirm that REAPER can dependably find linear structure in synthetic and natural data. In addition, when the inliers lie near a low-dimensional subspace, there is a rigorous theory that describes when REAPER can approximate this subspace.Comment: Formerly titled "Robust computation of linear models, or How to find a needle in a haystack

    Democratic Representations

    Full text link
    Minimization of the β„“βˆž\ell_{\infty} (or maximum) norm subject to a constraint that imposes consistency to an underdetermined system of linear equations finds use in a large number of practical applications, including vector quantization, approximate nearest neighbor search, peak-to-average power ratio (or "crest factor") reduction in communication systems, and peak force minimization in robotics and control. This paper analyzes the fundamental properties of signal representations obtained by solving such a convex optimization problem. We develop bounds on the maximum magnitude of such representations using the uncertainty principle (UP) introduced by Lyubarskii and Vershynin, and study the efficacy of β„“βˆž\ell_{\infty}-norm-based dynamic range reduction. Our analysis shows that matrices satisfying the UP, such as randomly subsampled Fourier or i.i.d. Gaussian matrices, enable the computation of what we call democratic representations, whose entries all have small and similar magnitude, as well as low dynamic range. To compute democratic representations at low computational complexity, we present two new, efficient convex optimization algorithms. We finally demonstrate the efficacy of democratic representations for dynamic range reduction in a DVB-T2-based broadcast system.Comment: Submitted to a Journa

    Radio Astronomical Image Formation using Constrained Least Squares and Krylov Subspaces

    Full text link
    Image formation for radio astronomy can be defined as estimating the spatial power distribution of celestial sources over the sky, given an array of antennas. One of the challenges with image formation is that the problem becomes ill-posed as the number of pixels becomes large. The introduction of constraints that incorporate a-priori knowledge is crucial. In this paper we show that in addition to non-negativity, the magnitude of each pixel in an image is also bounded from above. Indeed, the classical "dirty image" is an upper bound, but a much tighter upper bound can be formed from the data using array processing techniques. This formulates image formation as a least squares optimization problem with inequality constraints. We propose to solve this constrained least squares problem using active set techniques, and the steps needed to implement it are described. It is shown that the least squares part of the problem can be efficiently implemented with Krylov subspace based techniques, where the structure of the problem allows massive parallelism and reduced storage needs. The performance of the algorithm is evaluated using simulations
    • …
    corecore