36,772 research outputs found

    Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework

    Get PDF
    While many existing formal concept analysis algorithms are efficient, they are typically unsuitable for distributed implementation. Taking the MapReduce (MR) framework as our inspiration we introduce a distributed approach for performing formal concept mining. Our method has its novelty in that we use a light-weight MapReduce runtime called Twister which is better suited to iterative algorithms than recent distributed approaches. First, we describe the theoretical foundations underpinning our distributed formal concept analysis approach. Second, we provide a representative exemplar of how a classic centralized algorithm can be implemented in a distributed fashion using our methodology: we modify Ganter's classic algorithm by introducing a family of MR* algorithms, namely MRGanter and MRGanter+ where the prefix denotes the algorithm's lineage. To evaluate the factors that impact distributed algorithm performance, we compare our MR* algorithms with the state-of-the-art. Experiments conducted on real datasets demonstrate that MRGanter+ is efficient, scalable and an appealing algorithm for distributed problems.Comment: 17 pages, ICFCA 201, Formal Concept Analysis 201

    An exercise in transformational programming: Backtracking and Branch-and-Bound

    Get PDF
    We present a formal derivation of program schemes that are usually called Backtracking programs and Branch-and-Bound programs. The derivation consists of a series of transformation steps, specifically algebraic manipulations, on the initial specification until the desired programs are obtained. The well-known notions of linear recursion and tail recursion are extended, for structures, to elementwise linear recursion and elementwise tail recursion; and a transformation between them is derived too

    Parallel simulation of Population Dynamics P systems: updates and roadmap

    Get PDF
    Population Dynamics P systems are a type of multienvironment P systems that serve as a formal modeling framework for real ecosystems. The accurate simulation of these probabilisticmodels, e.g. with Direct distribution based on Consistent Blocks Algorithm, entails large run times. Hence, parallel platforms such as GPUs have been employed to speedup the simulation. In 2012, the first GPU simulator of PDP systems was presented. However, it was able to run only randomly generated PDP systems. In this paper, we present current updates made on this simulator, involving an input modu le for binary files and an output module for CSV files. Finally, the simulator has been experimentally validated with a real ecosystem model, and its performance has been tested with two high-end GPUs: Tesla C1060 and K40.Ministerio de EconomĂ­a y Competitividad TIN2012-37434Junta de AndalucĂ­a P08-TIC-0420

    Synthesis of Attributed Feature Models From Product Descriptions: Foundations

    Get PDF
    Feature modeling is a widely used formalism to characterize a set of products (also called configurations). As a manual elaboration is a long and arduous task, numerous techniques have been proposed to reverse engineer feature models from various kinds of artefacts. But none of them synthesize feature attributes (or constraints over attributes) despite the practical relevance of attributes for documenting the different values across a range of products. In this report, we develop an algorithm for synthesizing attributed feature models given a set of product descriptions. We present sound, complete, and parametrizable techniques for computing all possible hierarchies, feature groups, placements of feature attributes, domain values, and constraints. We perform a complexity analysis w.r.t. number of features, attributes, configurations, and domain size. We also evaluate the scalability of our synthesis procedure using randomized configuration matrices. This report is a first step that aims to describe the foundations for synthesizing attributed feature models

    An Integrated Semantic Web Service Discovery and Composition Framework

    Full text link
    In this paper we present a theoretical analysis of graph-based service composition in terms of its dependency with service discovery. Driven by this analysis we define a composition framework by means of integration with fine-grained I/O service discovery that enables the generation of a graph-based composition which contains the set of services that are semantically relevant for an input-output request. The proposed framework also includes an optimal composition search algorithm to extract the best composition from the graph minimising the length and the number of services, and different graph optimisations to improve the scalability of the system. A practical implementation used for the empirical analysis is also provided. This analysis proves the scalability and flexibility of our proposal and provides insights on how integrated composition systems can be designed in order to achieve good performance in real scenarios for the Web.Comment: Accepted to appear in IEEE Transactions on Services Computing 201
    • 

    corecore