970 research outputs found

    TernaryNet: Faster Deep Model Inference without GPUs for Medical 3D Segmentation using Sparse and Binary Convolutions

    Full text link
    Deep convolutional neural networks (DCNN) are currently ubiquitous in medical imaging. While their versatility and high quality results for common image analysis tasks including segmentation, localisation and prediction is astonishing, the large representational power comes at the cost of highly demanding computational effort. This limits their practical applications for image guided interventions and diagnostic (point-of-care) support using mobile devices without graphics processing units (GPU). We propose a new scheme that approximates both trainable weights and neural activations in deep networks by ternary values and tackles the open question of backpropagation when dealing with non-differentiable functions. Our solution enables the removal of the expensive floating-point matrix multiplications throughout any convolutional neural network and replaces them by energy and time preserving binary operators and population counts. Our approach, which is demonstrated using a fully-convolutional network (FCN) for CT pancreas segmentation leads to more than 10-fold reduced memory requirements and we provide a concept for sub-second inference without GPUs. Our ternary approximation obtains high accuracies (without any post-processing) with a Dice overlap of 71.0% that are statistically equivalent to using networks with high-precision weights and activations. We further demonstrate the significant improvements reached in comparison to binary quantisation and without our proposed ternary hyperbolic tangent continuation. We present a key enabling technique for highly efficient DCNN inference without GPUs that will help to bring the advances of deep learning to practical clinical applications. It has also great promise for improving accuracies in large-scale medical data retrieval

    Recent Advances in Convolutional Neural Network Acceleration

    Full text link
    In recent years, convolutional neural networks (CNNs) have shown great performance in various fields such as image classification, pattern recognition, and multi-media compression. Two of the feature properties, local connectivity and weight sharing, can reduce the number of parameters and increase processing speed during training and inference. However, as the dimension of data becomes higher and the CNN architecture becomes more complicated, the end-to-end approach or the combined manner of CNN is computationally intensive, which becomes limitation to CNN's further implementation. Therefore, it is necessary and urgent to implement CNN in a faster way. In this paper, we first summarize the acceleration methods that contribute to but not limited to CNN by reviewing a broad variety of research papers. We propose a taxonomy in terms of three levels, i.e.~structure level, algorithm level, and implementation level, for acceleration methods. We also analyze the acceleration methods in terms of CNN architecture compression, algorithm optimization, and hardware-based improvement. At last, we give a discussion on different perspectives of these acceleration and optimization methods within each level. The discussion shows that the methods in each level still have large exploration space. By incorporating such a wide range of disciplines, we expect to provide a comprehensive reference for researchers who are interested in CNN acceleration.Comment: submitted to Neurocomputin

    DNN Feature Map Compression using Learned Representation over GF(2)

    Full text link
    In this paper, we introduce a method to compress intermediate feature maps of deep neural networks (DNNs) to decrease memory storage and bandwidth requirements during inference. Unlike previous works, the proposed method is based on converting fixed-point activations into vectors over the smallest GF(2) finite field followed by nonlinear dimensionality reduction (NDR) layers embedded into a DNN. Such an end-to-end learned representation finds more compact feature maps by exploiting quantization redundancies within the fixed-point activations along the channel or spatial dimensions. We apply the proposed network architectures derived from modified SqueezeNet and MobileNetV2 to the tasks of ImageNet classification and PASCAL VOC object detection. Compared to prior approaches, the conducted experiments show a factor of 2 decrease in memory requirements with minor degradation in accuracy while adding only bitwise computations.Comment: CEFRL201

    Optimize Deep Convolutional Neural Network with Ternarized Weights and High Accuracy

    Full text link
    Deep convolution neural network has achieved great success in many artificial intelligence applications. However, its enormous model size and massive computation cost have become the main obstacle for deployment of such powerful algorithm in the low power and resource-limited embedded systems. As the countermeasure to this problem, in this work, we propose statistical weight scaling and residual expansion methods to reduce the bit-width of the whole network weight parameters to ternary values (i.e. -1, 0, +1), with the objectives to greatly reduce model size, computation cost and accuracy degradation caused by the model compression. With about 16x model compression rate, our ternarized ResNet-32/44/56 could outperform full-precision counterparts by 0.12%, 0.24% and 0.18% on CIFAR- 10 dataset. We also test our ternarization method with AlexNet and ResNet-18 on ImageNet dataset, which both achieve the best top-1 accuracy compared to recent similar works, with the same 16x compression rate. If further incorporating our residual expansion method, compared to the full-precision counterpart, our ternarized ResNet-18 even improves the top-5 accuracy by 0.61% and merely degrades the top-1 accuracy only by 0.42% for the ImageNet dataset, with 8x model compression rate. It outperforms the recent ABC-Net by 1.03% in top-1 accuracy and 1.78% in top-5 accuracy, with around 1.25x higher compression rate and more than 6x computation reduction due to the weight sparsity

    BitSplit-Net: Multi-bit Deep Neural Network with Bitwise Activation Function

    Full text link
    Significant computational cost and memory requirements for deep neural networks (DNNs) make it difficult to utilize DNNs in resource-constrained environments. Binary neural network (BNN), which uses binary weights and binary activations, has been gaining interests for its hardware-friendly characteristics and minimal resource requirement. However, BNN usually suffers from accuracy degradation. In this paper, we introduce "BitSplit-Net", a neural network which maintains the hardware-friendly characteristics of BNN while improving accuracy by using multi-bit precision. In BitSplit-Net, each bit of multi-bit activations propagates independently throughout the network before being merged at the end of the network. Thus, each bit path of the BitSplit-Net resembles BNN and hardware friendly features of BNN, such as bitwise binary activation function, are preserved in our scheme. We demonstrate that the BitSplit version of LeNet-5, VGG-9, AlexNet, and ResNet-18 can be trained to have similar classification accuracy at a lower computational cost compared to conventional multi-bit networks with low bit precision (<= 4-bit). We further evaluate BitSplit-Net on GPU with custom CUDA kernel, showing that BitSplit-Net can achieve better hardware performance in comparison to conventional multi-bit networks

    WRPN: Wide Reduced-Precision Networks

    Full text link
    For computer vision applications, prior works have shown the efficacy of reducing numeric precision of model parameters (network weights) in deep neural networks. Activation maps, however, occupy a large memory footprint during both the training and inference step when using mini-batches of inputs. One way to reduce this large memory footprint is to reduce the precision of activations. However, past works have shown that reducing the precision of activations hurts model accuracy. We study schemes to train networks from scratch using reduced-precision activations without hurting accuracy. We reduce the precision of activation maps (along with model parameters) and increase the number of filter maps in a layer, and find that this scheme matches or surpasses the accuracy of the baseline full-precision network. As a result, one can significantly improve the execution efficiency (e.g. reduce dynamic memory footprint, memory bandwidth and computational energy) and speed up the training and inference process with appropriate hardware support. We call our scheme WRPN - wide reduced-precision networks. We report results and show that WRPN scheme is better than previously reported accuracies on ILSVRC-12 dataset while being computationally less expensive compared to previously reported reduced-precision networks

    FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks

    Full text link
    Convolutional Neural Networks have rapidly become the most successful machine learning algorithm, enabling ubiquitous machine vision and intelligent decisions on even embedded computing-systems. While the underlying arithmetic is structurally simple, compute and memory requirements are challenging. One of the promising opportunities is leveraging reduced-precision representations for inputs, activations and model parameters. The resulting scalability in performance, power efficiency and storage footprint provides interesting design compromises in exchange for a small reduction in accuracy. FPGAs are ideal for exploiting low-precision inference engines leveraging custom precisions to achieve the required numerical accuracy for a given application. In this article, we describe the second generation of the FINN framework, an end-to-end tool which enables design space exploration and automates the creation of fully customized inference engines on FPGAs. Given a neural network description, the tool optimizes for given platforms, design targets and a specific precision. We introduce formalizations of resource cost functions and performance predictions, and elaborate on the optimization algorithms. Finally, we evaluate a selection of reduced precision neural networks ranging from CIFAR-10 classifiers to YOLO-based object detection on a range of platforms including PYNQ and AWS\,F1, demonstrating new unprecedented measured throughput at 50TOp/s on AWS-F1 and 5TOp/s on embedded devices.Comment: to be published in ACM TRETS Special Edition on Deep Learnin

    A Survey of FPGA-Based Neural Network Accelerator

    Full text link
    Recent researches on neural network have shown significant advantage in machine learning over traditional algorithms based on handcrafted features and models. Neural network is now widely adopted in regions like image, speech and video recognition. But the high computation and storage complexity of neural network inference poses great difficulty on its application. CPU platforms are hard to offer enough computation capacity. GPU platforms are the first choice for neural network process because of its high computation capacity and easy to use development frameworks. On the other hand, FPGA-based neural network inference accelerator is becoming a research topic. With specifically designed hardware, FPGA is the next possible solution to surpass GPU in speed and energy efficiency. Various FPGA-based accelerator designs have been proposed with software and hardware optimization techniques to achieve high speed and energy efficiency. In this paper, we give an overview of previous work on neural network inference accelerators based on FPGA and summarize the main techniques used. An investigation from software to hardware, from circuit level to system level is carried out to complete analysis of FPGA-based neural network inference accelerator design and serves as a guide to future work

    LUTNet: Rethinking Inference in FPGA Soft Logic

    Full text link
    Research has shown that deep neural networks contain significant redundancy, and that high classification accuracies can be achieved even when weights and activations are quantised down to binary values. Network binarisation on FPGAs greatly increases area efficiency by replacing resource-hungry multipliers with lightweight XNOR gates. However, an FPGA's fundamental building block, the K-LUT, is capable of implementing far more than an XNOR: it can perform any K-input Boolean operation. Inspired by this observation, we propose LUTNet, an end-to-end hardware-software framework for the construction of area-efficient FPGA-based neural network accelerators using the native LUTs as inference operators. We demonstrate that the exploitation of LUT flexibility allows for far heavier pruning than possible in prior works, resulting in significant area savings while achieving comparable accuracy. Against the state-of-the-art binarised neural network implementation, we achieve twice the area efficiency for several standard network models when inferencing popular datasets. We also demonstrate that even greater energy efficiency improvements are obtainable.Comment: Accepted manuscript uploaded 01/04/19. DOA 03/03/1

    The High-Dimensional Geometry of Binary Neural Networks

    Full text link
    Recent research has shown that one can train a neural network with binary weights and activations at train time by augmenting the weights with a high-precision continuous latent variable that accumulates small changes from stochastic gradient descent. However, there is a dearth of theoretical analysis to explain why we can effectively capture the features in our data with binary weights and activations. Our main result is that the neural networks with binary weights and activations trained using the method of Courbariaux, Hubara et al. (2016) work because of the high-dimensional geometry of binary vectors. In particular, the ideal continuous vectors that extract out features in the intermediate representations of these BNNs are well-approximated by binary vectors in the sense that dot products are approximately preserved. Compared to previous research that demonstrated the viability of such BNNs, our work explains why these BNNs work in terms of the HD geometry. Our theory serves as a foundation for understanding not only BNNs but a variety of methods that seek to compress traditional neural networks. Furthermore, a better understanding of multilayer binary neural networks serves as a starting point for generalizing BNNs to other neural network architectures such as recurrent neural networks.Comment: 12 pages, 4 Figure
    • …
    corecore