2,245 research outputs found

    Comparing several heuristics for a packing problem

    Full text link
    Packing problems are in general NP-hard, even for simple cases. Since now there are no highly efficient algorithms available for solving packing problems. The two-dimensional bin packing problem is about packing all given rectangular items, into a minimum size rectangular bin, without overlapping. The restriction is that the items cannot be rotated. The current paper is comparing a greedy algorithm with a hybrid genetic algorithm in order to see which technique is better for the given problem. The algorithms are tested on different sizes data.Comment: 5 figures, 2 tables; accepted: International Journal of Advanced Intelligence Paradigm

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    Co-Scheduling Algorithms for High-Throughput Workload Execution

    Get PDF
    This paper investigates co-scheduling algorithms for processing a set of parallel applications. Instead of executing each application one by one, using a maximum degree of parallelism for each of them, we aim at scheduling several applications concurrently. We partition the original application set into a series of packs, which are executed one by one. A pack comprises several applications, each of them with an assigned number of processors, with the constraint that the total number of processors assigned within a pack does not exceed the maximum number of available processors. The objective is to determine a partition into packs, and an assignment of processors to applications, that minimize the sum of the execution times of the packs. We thoroughly study the complexity of this optimization problem, and propose several heuristics that exhibit very good performance on a variety of workloads, whose application execution times model profiles of parallel scientific codes. We show that co-scheduling leads to to faster workload completion time and to faster response times on average (hence increasing system throughput and saving energy), for significant benefits over traditional scheduling from both the user and system perspectives

    On three soft rectangle packing problems with guillotine constraints

    Full text link
    We investigate how to partition a rectangular region of length L1L_1 and height L2L_2 into nn rectangles of given areas (a1,,an)(a_1, \dots, a_n) using two-stage guillotine cuts, so as to minimize either (i) the sum of the perimeters, (ii) the largest perimeter, or (iii) the maximum aspect ratio of the rectangles. These problems play an important role in the ongoing Vietnamese land-allocation reform, as well as in the optimization of matrix multiplication algorithms. We show that the first problem can be solved to optimality in O(nlogn)\mathcal{O}(n \log n), while the two others are NP-hard. We propose mixed integer programming (MIP) formulations and a binary search-based approach for solving the NP-hard problems. Experimental analyses are conducted to compare the solution approaches in terms of computational efficiency and solution quality, for different objectives

    Hybrid next-fit algorithm for the two-dimensional rectangle bin-packing problem

    Get PDF
    We present a new approximation algorithm for the two-dimensional bin-packing problem. The algorithm is based on two one-dimensional bin-packing algorithms. Since the algorithm is of next-fit type it can also be used for those cases where the output is required to be on-line (e. g. if we open an new bin we have no possibility to pack elements into the earlier opened bins). We give a tight bound for its worst-case and show that this bound is a parameter of the maximal sizes of the items to be packed. Moreover, we also present a probabilistic analysis of this algorithm.worst-case analysis;probabilistic analysis;bin-packing;heuristic algorithm;on-line algorithm;two-dimensional packing
    corecore