37,523 research outputs found

    Flow-Aware Elephant Flow Detection for Software-Defined Networks

    Get PDF
    Software-defined networking (SDN) separates the network control plane from the packet forwarding plane, which provides comprehensive network-state visibility for better network management and resilience. Traffic classification, particularly for elephant flow detection, can lead to improved flow control and resource provisioning in SDN networks. Existing elephant flow detection techniques use pre-set thresholds that cannot scale with the changes in the traffic concept and distribution. This paper proposes a flow-aware elephant flow detection applied to SDN. The proposed technique employs two classifiers, each respectively on SDN switches and controller, to achieve accurate elephant flow detection efficiently. Moreover, this technique allows sharing the elephant flow classification tasks between the controller and switches. Hence, most mice flows can be filtered in the switches, thus avoiding the need to send large numbers of classification requests and signaling messages to the controller. Experimental findings reveal that the proposed technique outperforms contemporary methods in terms of the running time, accuracy, F-measure, and recall

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Matching model of flow table for networked big data

    Full text link
    Networking for big data has to be intelligent because it will adjust data transmission requirements adaptively during data splitting and merging. Software-defined networking (SDN) provides a workable and practical paradigm for designing more efficient and flexible networks. Matching strategy in the flow table of SDN switches is most crucial. In this paper, we use a classification approach to analyze the structure of packets based on the tuple-space lookup mechanism, and propose a matching model of the flow table in SDN switches by classifying packets based on a set of fields, which is called an F-OpenFlow. The experiment results show that the proposed F-OpenFlow effectively improves the utilization rate and matching efficiency of the flow table in SDN switches for networked big data.Comment: 14 pages, 6 figures, 2 table
    corecore