256 research outputs found

    Content Authentication for Neural Imaging Pipelines: End-to-end Optimization of Photo Provenance in Complex Distribution Channels

    Full text link
    Forensic analysis of digital photo provenance relies on intrinsic traces left in the photograph at the time of its acquisition. Such analysis becomes unreliable after heavy post-processing, such as down-sampling and re-compression applied upon distribution in the Web. This paper explores end-to-end optimization of the entire image acquisition and distribution workflow to facilitate reliable forensic analysis at the end of the distribution channel. We demonstrate that neural imaging pipelines can be trained to replace the internals of digital cameras, and jointly optimized for high-fidelity photo development and reliable provenance analysis. In our experiments, the proposed approach increased image manipulation detection accuracy from 45% to over 90%. The findings encourage further research towards building more reliable imaging pipelines with explicit provenance-guaranteeing properties.Comment: Camera ready + supplement, CVPR'1

    Neural Imaging Pipelines - the Scourge or Hope of Forensics?

    Full text link
    Forensic analysis of digital photographs relies on intrinsic statistical traces introduced at the time of their acquisition or subsequent editing. Such traces are often removed by post-processing (e.g., down-sampling and re-compression applied upon distribution in the Web) which inhibits reliable provenance analysis. Increasing adoption of computational methods within digital cameras further complicates the process and renders explicit mathematical modeling infeasible. While this trend challenges forensic analysis even in near-acquisition conditions, it also creates new opportunities. This paper explores end-to-end optimization of the entire image acquisition and distribution workflow to facilitate reliable forensic analysis at the end of the distribution channel, where state-of-the-art forensic techniques fail. We demonstrate that a neural network can be trained to replace the entire photo development pipeline, and jointly optimized for high-fidelity photo rendering and reliable provenance analysis. Such optimized neural imaging pipeline allowed us to increase image manipulation detection accuracy from approx. 45% to over 90%. The network learns to introduce carefully crafted artifacts, akin to digital watermarks, which facilitate subsequent manipulation detection. Analysis of performance trade-offs indicates that most of the gains can be obtained with only minor distortion. The findings encourage further research towards building more reliable imaging pipelines with explicit provenance-guaranteeing properties.Comment: Manuscript + supplement; currently under review; compressed figures to minimize file size. arXiv admin note: text overlap with arXiv:1812.0151

    Handheld Multi-Frame Super-Resolution

    Full text link
    Compared to DSLR cameras, smartphone cameras have smaller sensors, which limits their spatial resolution; smaller apertures, which limits their light gathering ability; and smaller pixels, which reduces their signal-to noise ratio. The use of color filter arrays (CFAs) requires demosaicing, which further degrades resolution. In this paper, we supplant the use of traditional demosaicing in single-frame and burst photography pipelines with a multiframe super-resolution algorithm that creates a complete RGB image directly from a burst of CFA raw images. We harness natural hand tremor, typical in handheld photography, to acquire a burst of raw frames with small offsets. These frames are then aligned and merged to form a single image with red, green, and blue values at every pixel site. This approach, which includes no explicit demosaicing step, serves to both increase image resolution and boost signal to noise ratio. Our algorithm is robust to challenging scene conditions: local motion, occlusion, or scene changes. It runs at 100 milliseconds per 12-megapixel RAW input burst frame on mass-produced mobile phones. Specifically, the algorithm is the basis of the Super-Res Zoom feature, as well as the default merge method in Night Sight mode (whether zooming or not) on Google's flagship phone.Comment: 24 pages, accepted to Siggraph 2019 Technical Papers progra

    Megapixel Photon-Counting Color Imaging using Quanta Image Sensor

    Full text link
    Quanta Image Sensor (QIS) is a single-photon detector designed for extremely low light imaging conditions. Majority of the existing QIS prototypes are monochrome based on single-photon avalanche diodes (SPAD). Passive color imaging has not been demonstrated with single-photon detectors due to the intrinsic difficulty of shrinking the pixel size and increasing the spatial resolution while maintaining acceptable intra-pixel cross-talk. In this paper, we present image reconstruction of the first color QIS with a resolution of 1024×10241024 \times 1024 pixels, supporting both single-bit and multi-bit photon counting capability. Our color image reconstruction is enabled by a customized joint demosaicing-denoising algorithm, leveraging truncated Poisson statistics and variance stabilizing transforms. Experimental results of the new sensor and algorithm demonstrate superior color imaging performance for very low-light conditions with a mean exposure of as low as a few photons per pixel in both real and simulated images

    Joint optimization of multispectral filter arrays and demosaicking for pathological images

    Full text link
    A capturing system with multispectral filter array (MSFA) technology is proposed for shortening the capture time and reducing costs. Therein, a mosaicked image captured using an MSFA is demosaicked to reconstruct multispectral images (MSIs). Joint optimization of the spectral sensitivity of the MSFAs and demosaicking is considered, and pathology-specific multispectral imaging is proposed. This optimizes the MSFA and the demosaicking matrix by minimizing the reconstruction error between the training data of a hematoxylin and eosin-stained pathological tissue and a demosaicked MSI using a cost function. Initially, the spectral sensitivity of the filter array is set randomly and the mosaicked image is obtained from the training data. Subsequently, a reconstructed image is obtained using Wiener estimation. To minimize the reconstruction error, the spectral sensitivity of the filter array and the Wiener estimation matrix are optimized iteratively through an interior-point approach. The effectiveness of the proposed MSFA and demosaicking is demonstrated by comparing the recovered spectrum and RGB image with those obtained using a conventional method

    Rendering Nighttime Image Via Cascaded Color and Brightness Compensation

    Full text link
    Image signal processing (ISP) is crucial for camera imaging, and neural networks (NN) solutions are extensively deployed for daytime scenes. The lack of sufficient nighttime image dataset and insights on nighttime illumination characteristics poses a great challenge for high-quality rendering using existing NN ISPs. To tackle it, we first built a high-resolution nighttime RAW-RGB (NR2R) dataset with white balance and tone mapping annotated by expert professionals. Meanwhile, to best capture the characteristics of nighttime illumination light sources, we develop the CBUnet, a two-stage NN ISP to cascade the compensation of color and brightness attributes. Experiments show that our method has better visual quality compared to traditional ISP pipeline, and is ranked at the second place in the NTIRE 2022 Night Photography Rendering Challenge for two tracks by respective People's and Professional Photographer's choices. The code and relevant materials are avaiable on our website: https://njuvision.github.io/CBUnet.Comment: Accepted by NTIRE 2022 (CVPR Workshop

    Smart Cameras

    Full text link
    We review camera architecture in the age of artificial intelligence. Modern cameras use physical components and software to capture, compress and display image data. Over the past 5 years, deep learning solutions have become superior to traditional algorithms for each of these functions. Deep learning enables 10-100x reduction in electrical sensor power per pixel, 10x improvement in depth of field and dynamic range and 10-100x improvement in image pixel count. Deep learning enables multiframe and multiaperture solutions that fundamentally shift the goals of physical camera design. Here we review the state of the art of deep learning in camera operations and consider the impact of AI on the physical design of cameras

    Mobile Computational Photography: A Tour

    Full text link
    The first mobile camera phone was sold only 20 years ago, when taking pictures with one's phone was an oddity, and sharing pictures online was unheard of. Today, the smartphone is more camera than phone. How did this happen? This transformation was enabled by advances in computational photography -the science and engineering of making great images from small form factor, mobile cameras. Modern algorithmic and computing advances, including machine learning, have changed the rules of photography, bringing to it new modes of capture, post-processing, storage, and sharing. In this paper, we give a brief history of mobile computational photography and describe some of the key technological components, including burst photography, noise reduction, and super-resolution. At each step, we may draw naive parallels to the human visual system

    Learning the image processing pipeline

    Full text link
    Many creative ideas are being proposed for image sensor designs, and these may be useful in applications ranging from consumer photography to computer vision. To understand and evaluate each new design, we must create a corresponding image processing pipeline that transforms the sensor data into a form that is appropriate for the application. The need to design and optimize these pipelines is time-consuming and costly. We explain a method that combines machine learning and image systems simulation that automates the pipeline design. The approach is based on a new way of thinking of the image processing pipeline as a large collection of local linear filters. We illustrate how the method has been used to design pipelines for novel sensor architectures in consumer photography applications

    Digital Image Forensics vs. Image Composition: An Indirect Arms Race

    Full text link
    The field of image composition is constantly trying to improve the ways in which an image can be altered and enhanced. While this is usually done in the name of aesthetics and practicality, it also provides tools that can be used to maliciously alter images. In this sense, the field of digital image forensics has to be prepared to deal with the influx of new technology, in a constant arms-race. In this paper, the current state of this arms-race is analyzed, surveying the state-of-the-art and providing means to compare both sides. A novel scale to classify image forensics assessments is proposed, and experiments are performed to test composition techniques in regards to different forensics traces. We show that even though research in forensics seems unaware of the advanced forms of image composition, it possesses the basic tools to detect it
    • …
    corecore