17,818 research outputs found

    An efficient algorithm to recognize local Clifford equivalence of graph states

    Full text link
    In [Phys. Rev. A 69, 022316 (2004)] we presented a description of the action of local Clifford operations on graph states in terms of a graph transformation rule, known in graph theory as \emph{local complementation}. It was shown that two graph states are equivalent under the local Clifford group if and only if there exists a sequence of local complementations which relates their associated graphs. In this short note we report the existence of a polynomial time algorithm, published in [Combinatorica 11 (4), 315 (1991)], which decides whether two given graphs are related by a sequence of local complementations. Hence an efficient algorithm to detect local Clifford equivalence of graph states is obtained.Comment: 3 pages. Accepted in Phys. Rev.

    Subclasses of Normal Helly Circular-Arc Graphs

    Full text link
    A Helly circular-arc model M = (C,A) is a circle C together with a Helly family \A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.Comment: 39 pages, 13 figures. A previous version of the paper (entitled Proper Helly Circular-Arc Graphs) appeared at WG'0

    Complexity of Graph State Preparation

    Full text link
    The graph state formalism is a useful abstraction of entanglement. It is used in some multipartite purification schemes and it adequately represents universal resources for measurement-only quantum computation. We focus in this paper on the complexity of graph state preparation. We consider the number of ancillary qubits, the size of the primitive operators, and the duration of preparation. For each lexicographic order over these parameters we give upper and lower bounds for the complexity of graph state preparation. The first part motivates our work and introduces basic notions and notations for the study of graph states. Then we study some graph properties of graph states, characterizing their minimal degree by local unitary transformations, we propose an algorithm to reduce the degree of a graph state, and show the relationship with Sutner sigma-game. These properties are used in the last part, where algorithms and lower bounds for each lexicographic order over the considered parameters are presented.Comment: 17 page

    Computing on Anonymous Quantum Network

    Full text link
    This paper considers distributed computing on an anonymous quantum network, a network in which no party has a unique identifier and quantum communication and computation are available. It is proved that the leader election problem can exactly (i.e., without error in bounded time) be solved with at most the same complexity up to a constant factor as that of exactly computing symmetric functions (without intermediate measurements for a distributed and superposed input), if the number of parties is given to every party. A corollary of this result is a more efficient quantum leader election algorithm than existing ones: the new quantum algorithm runs in O(n) rounds with bit complexity O(mn^2), on an anonymous quantum network with n parties and m communication links. Another corollary is the first quantum algorithm that exactly computes any computable Boolean function with round complexity O(n) and with smaller bit complexity than that of existing classical algorithms in the worst case over all (computable) Boolean functions and network topologies. More generally, any n-qubit state can be shared with that complexity on an anonymous quantum network with n parties.Comment: 25 page

    On the Reconstruction of Geodesic Subspaces of RN\mathbb{R}^N

    Full text link
    We consider the topological and geometric reconstruction of a geodesic subspace of RN\mathbb{R}^N both from the \v{C}ech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our reconstruction technique leverages the intrinsic length metric induced by the geodesics on the subspace. We consider the distortion and convexity radius as our sampling parameters for a successful reconstruction. For a geodesic subspace with finite distortion and positive convexity radius, we guarantee a correct computation of its homotopy and homology groups from the sample. For geodesic subspaces of R2\mathbb{R}^2, we also devise an algorithm to output a homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown shape of interest
    • …
    corecore