4 research outputs found

    Scribble-based gradient mesh recoloring

    Get PDF
    Previous gradient mesh recoloring methods usually have dependencies on an additional reference image and the rasterized gradient mesh. To circumvent such dependencies, we propose a user scribble-based recoloring method, in which users are allowed to annotate gradient meshes with a few color scribbles. Our approach builds an auxiliary mesh from gradient meshes, namely control net, by taking both colors and local color gradients at mesh points into account. We then develop an extended chrominance blending method to propagate the user specified colors over the control net. The recolored gradient mesh is finally reconstructed from the recolored control net. Experiments validate the effectiveness of our approach on multiple gradient meshes. Compared with various alternative solutions, our method has no color bleedings nor sampling artifacts, and can achieve fast performance

    Visual Improvements in Color Image Processing Using Regularized Filtration

    Get PDF
    I. Introduction The principal objective of image enhancemen

    Robust Intensity-Based Localization Method for Autonomous Driving on Snow-Wet Road Surface

    Get PDF
    金沢大学新学術創成研究機構Autonomous vehicles are being developed rapidly in recent years. In advance implementation stages, many particular problems must be solved to bring this technology into the market place. This paper focuses on the problem of driving in snow and wet road surface environments. First, the quality of laser imaging detection and ranging (LIDAR) reflectivity decreases on wet road surfaces. Therefore, an accumulation strategy is designed to increase the density of online LIDAR images. In order to enhance the texture of the accumulated images, principal component analysis is used to understand the geometrical structures and texture patterns in the map images. The LIDAR images are then reconstructed using the leading principal components with respect to the variance distribution accounted by each eigenvector. Second, the appearance of snow lines deforms the expected road context in LIDAR images. Accordingly, the edge profiles of the LIDAR and map images are extracted to encode the lane lines and roadside edges. Edge matching between the two profiles is then calculated to improve localization in the lateral direction. The proposed method has been tested and evaluated using real data that are collected during the winter of 2016-2017 in Suzu and Kanazawa, Japan. The experimental results show that the proposed method increases the robustness of autonomous driving on wet road surfaces, provides a stable performance in laterally localizing the vehicle in the presence of snow lines, and significantly reduces the overall localization error at a speed of 60 km/h. © 2005-2012 IEEE
    corecore