4,376 research outputs found

    RCFD: A Novel Channel Access Scheme for Full-Duplex Wireless Networks Based on Contention in Time and Frequency Domains

    Get PDF
    In the last years, the advancements in signal processing and integrated circuits technology allowed several research groups to develop working prototypes of in-band full-duplex wireless systems. The introduction of such a revolutionary concept is promising in terms of increasing network performance, but at the same time poses several new challenges, especially at the MAC layer. Consequently, innovative channel access strategies are needed to exploit the opportunities provided by full-duplex while dealing with the increased complexity derived from its adoption. In this direction, this paper proposes RTS/CTS in the Frequency Domain (RCFD), a MAC layer scheme for full-duplex ad hoc wireless networks, based on the idea of time-frequency channel contention. According to this approach, different OFDM subcarriers are used to coordinate how nodes access the shared medium. The proposed scheme leads to efficient transmission scheduling with the result of avoiding collisions and exploiting full-duplex opportunities. The considerable performance improvements with respect to standard and state-of-the-art MAC protocols for wireless networks are highlighted through both theoretical analysis and network simulations.Comment: Submitted at IEEE Transactions on Mobile Computing. arXiv admin note: text overlap with arXiv:1605.0971

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog
    • …
    corecore