869 research outputs found

    Lin-Kernighan Heuristic Adaptations for the Generalized Traveling Salesman Problem

    Get PDF
    The Lin-Kernighan heuristic is known to be one of the most successful heuristics for the Traveling Salesman Problem (TSP). It has also proven its efficiency in application to some other problems. In this paper we discuss possible adaptations of TSP heuristics for the Generalized Traveling Salesman Problem (GTSP) and focus on the case of the Lin-Kernighan algorithm. At first, we provide an easy-to-understand description of the original Lin-Kernighan heuristic. Then we propose several adaptations, both trivial and complicated. Finally, we conduct a fair competition between all the variations of the Lin-Kernighan adaptation and some other GTSP heuristics. It appears that our adaptation of the Lin-Kernighan algorithm for the GTSP reproduces the success of the original heuristic. Different variations of our adaptation outperform all other heuristics in a wide range of trade-offs between solution quality and running time, making Lin-Kernighan the state-of-the-art GTSP local search.Comment: 25 page

    Renormalization for Discrete Optimization

    Full text link
    The renormalization group has proven to be a very powerful tool in physics for treating systems with many length scales. Here we show how it can be adapted to provide a new class of algorithms for discrete optimization. The heart of our method uses renormalization and recursion, and these processes are embedded in a genetic algorithm. The system is self-consistently optimized on all scales, leading to a high probability of finding the ground state configuration. To demonstrate the generality of such an approach, we perform tests on traveling salesman and spin glass problems. The results show that our ``genetic renormalization algorithm'' is extremely powerful.Comment: 4 pages, no figur
    corecore