2 research outputs found

    SOFTWARE UNDER TEST DALAM PENELITIAN SOFTWARE TESTING: SEBUAH REVIEW

    Get PDF
    Software under Test (SUT) is an essential aspect of software testing research activities. Preparation of the SUT is not simple. It requires accuracy, completeness and will affect the quality of the research conducted. Currently, there are several ways to utilize an SUT in software testing research: building an own SUT, utilization of open source to build an SUT, and SUT from the repository utilization. This article discusses the results of SUT identification in many software testing studies. The research is conducted in a systematic literature review (SLR) using the Kitchenham protocol. The review process is carried out on 86 articles published in 2017-2020. The article was selected after two selection stages: the Inclusion and Exclusion Criteria and the quality assessment. The study results show that the trend of using open source is very dominant. Some researchers use open source as the basis for developing SUT, while others use SUT from a repository that provides ready-to-use SUT. In this context, utilization of the SUT from the software infrastructure repository (SIR) and Defect4J are the most significant choice of researchers

    Victoria Amazonica Optimization (VAO): An Algorithm Inspired by the Giant Water Lily Plant

    Full text link
    The Victoria Amazonica plant, often known as the Giant Water Lily, has the largest floating spherical leaf in the world, with a maximum leaf diameter of 3 meters. It spreads its leaves by the force of its spines and creates a large shadow underneath, killing any plants that require sunlight. These water tyrants use their formidable spines to compel each other to the surface and increase their strength to grab more space from the surface. As they spread throughout the pond or basin, with the earliest-growing leaves having more room to grow, each leaf gains a unique size. Its flowers are transsexual and when they bloom, Cyclocephala beetles are responsible for the pollination process, being attracted to the scent of the female flower. After entering the flower, the beetle becomes covered with pollen and transfers it to another flower for fertilization. After the beetle leaves, the flower turns into a male and changes color from white to pink. The male flower dies and sinks into the water, releasing its seed to help create a new generation. In this paper, the mathematical life cycle of this magnificent plant is introduced, and each leaf and blossom are treated as a single entity. The proposed bio-inspired algorithm is tested with 24 benchmark optimization test functions, such as Ackley, and compared to ten other famous algorithms, including the Genetic Algorithm. The proposed algorithm is tested on 10 optimization problems: Minimum Spanning Tree, Hub Location Allocation, Quadratic Assignment, Clustering, Feature Selection, Regression, Economic Dispatching, Parallel Machine Scheduling, Color Quantization, and Image Segmentation and compared to traditional and bio-inspired algorithms. Overall, the performance of the algorithm in all tasks is satisfactory.Comment: 45 page
    corecore