4 research outputs found

    Simulation with Fluctuating and Singular Rates

    Get PDF
    Abstract. In this paper we present a method to generate independent samples for a general random variable, either continuous or discrete. The algorithm is an extension of the Acceptance-Rejection method, and it is particularly useful for kinetic simulation in which the rates are fluctuating in time and have singular limits, as occurs for example in simulation of recombination interactions in a plasma. Although it depends on some additional requirements, the new method is easy to implement and rejects less samples than the Acceptance-Rejection method

    Risk in the development design.

    Get PDF

    Numerical Techniques for Stochastic Optimization

    Get PDF
    This is a comprehensive and timely overview of the numerical techniques that have been developed to solve stochastic programming problems. After a brief introduction to the field, where accent is laid on modeling questions, the next few chapters lay out the challenges that must be met in this area. They also provide the background for the description of the computer implementations given in the third part of the book. Selected applications are described next. Some of these have directly motivated the development of the methods described in the earlier chapters. They include problems that come from facilities location, exploration investments, control of ecological systems, energy distribution and generation. Test problems are collected in the last chapter. This is the first book devoted to this subject. It comprehensively covers all major advances in the field (both Western and Soviet). It is only because of the recent developments in computer technology, that we have now reached a point where our computing power matches the inherent size requirements faced in this area. The book demonstrates that a large class of stochastic programming problems are now in the range of our numerical capacities
    corecore