49 research outputs found

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems

    Full text link
    The domains and problems for which it would be desirable to introduce information systems are currently very complex and the software development process is thus of the same complexity. One of these domains is health-care. Model-Driven Development (MDD) and Service-Oriented Architecture (SOA) are software development approaches that raise to deal with complexity, to reduce time and cost of development, augmenting flexibility and interoperability. However, many techniques and approaches that have been introduced are of little use when not provided under a formalized and well-documented methodological umbrella. A methodology gives the process a well-defined structure that helps in fast and efficient analysis and design, trouble-free implementation, and finally results in the software product improved quality. While MDD and SOA are gaining their momentum toward the adoption in the software industry, there is one critical issue yet to be addressed before its power is fully realized. It is beyond dispute that requirements engineering (RE) has become a critical task within the software development process. Errors made during this process may have negative effects on subsequent development steps, and on the quality of the resulting software. For this reason, the MDD and SOA development approaches should not only be taken into consideration during design and implementation as usually occurs, but also during the RE process. The contribution of this dissertation aims at improving the development process of health-care applications by proposing OpenUP/MDRE methodology. The main goal of this methodology is to enrich the development process of SOA-based health-care systems by focusing on the requirements engineering processes in the model-driven context. I believe that the integration of those two highly important areas of software engineering, gathered in one consistent process, will provide practitioners with many benets. It is noteworthy that the approach presented here was designed for SOA-based health-care applications, however, it also provides means to adapt it to other architectural paradigms or domains. The OpenUP/MDRE approach is an extension of the lightweight OpenUP methodology for iterative, architecture-oriented and model-driven software development. The motivation for this research comes from the experience I gained as a computer science professional working on the health-care systems. This thesis also presents a comprehensive study about: i) the requirements engineering methods and techniques that are being used in the context of the model-driven development, ii) known generic but flexible and extensible methodologies, as well as approaches for service-oriented systems development, iii) requirements engineering techniques used in the health-care industry. Finally, OpenUP/MDRE was applied to a concrete industrial health-care project in order to show the feasibility and accuracy of this methodological approach.Loniewski, G. (2010). OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems. http://hdl.handle.net/10251/11652Archivo delegad

    BPMNt : a proposal for flexible process tailoring representation in BPMN /

    Get PDF
    Business Process Model and Notation (BPMN) is a de-facto standard for business process modeling, which focuses on the representation of the process behavior. However, it can also succeed in representing the behavior of software processes, since they are a type of business process. Although BPMN has been extensively used for modeling processes in different domains, its standard specification does not have any mechanism to support users in activities related to process adaptation (tailoring). Moreover, researches extending BPMN are based on complex consolidated models, which hamper the analysis and maintenance of individual variant process models and are not appropriate for application domains in which process variations are difficult to predict, such as in software development processes. Thus, our objective was to provide a BPMN-compliant extension and associated mechanisms for specifying flexible process tailoring on models produced with this language while ensuring the correctness of adapted process models and explicitly capturing change traces. We have focused our research on the domains of Software Process Engineering (SPE) and Business Process Management (BPM). At last, we evaluated the applicability of the proposal for representing realistic tailoring scenarios in both domains.BPMN (Business Process Model and Notation) é um padrão para modelagem de processos de negócio, que tem seu foco na representação do comportamento de processos. No entanto, ele pode também ser usado para representar o comportamento de processos de software, já que eles são um tipo de processo de negócio. Embora BPMN tem sido extensivamente usado para modelar processos em diferentes domínios, sua especificação padrão não possui nenhum mecanismo para apoiar usuários em atividades relacionadas à adaptação de processos. Pesquisas que estendem o padrão são baseadas em modelos complexos, que dificultam a análise e manutenção de modelos variantes, e não são apropriadas para domínios de aplicação onde variações de processo são difíceis de predizer, como em processos de desenvolvimento de software. Assim, nosso objetivo foi fornecer uma extensão para BPMN, chamada BPMNt, e mecanismos de suporte para especificar, de modo flexível, adaptações em processos modelados com esta linguagem. BPMNt deve também garantir a corretude de modelos adaptados e explicitamente capturar rastros de mudanças realizadas. Essa pesquisa teve como foco os domínios de Engenharia de Processos de Software e Gerenciamento de Processos de Negócio. Por fim, nós avaliamos a aplicabilidade da proposta para representar cenários de adaptação reais em ambos os domínios

    Determination of Time Dependent Stress Distribution on Potato Tubers at Mechanical Collision

    Get PDF
    This study focuses on determining internal stress progression and the realistic representation of time dependent deformation behaviour of potato tubers under a sample mechanical collision case. A reverse engineering approach, physical material tests and finite element method (FEM)-based explicit dynamics simulations were utilised to investigate the collision based deformation characteristics of the potato tubers. Useful numerical data and deformation visuals were obtained from the simulation results. The numerical results are presented in a format that can be used for the determination of bruise susceptibility magnitude on solid-like agricultural products. The modulus of elasticity was calculated from experimental data as 3.12 [MPa] and simulation results showed that the maximum equivalent stress was 1.40 [MPa] and 3.13 [MPa] on the impacting and impacted tubers respectively. These stress values indicate that bruising is likely on the tubers. This study contributes to further research on the usage of numerical-methods-based nonlinear explicit dynamics simulation techniques in complicated deformation and bruising investigations and industrial applications related to solid-like agricultural products

    Preface

    Get PDF

    The 11th Conference of PhD Students in Computer Science

    Get PDF
    corecore