4,693 research outputs found

    An Alloy Verification Model for Consensus-Based Auction Protocols

    Full text link
    Max Consensus-based Auction (MCA) protocols are an elegant approach to establish conflict-free distributed allocations in a wide range of network utility maximization problems. A set of agents independently bid on a set of items, and exchange their bids with their first hop-neighbors for a distributed (max-consensus) winner determination. The use of MCA protocols was proposed, e.g.e.g., to solve the task allocation problem for a fleet of unmanned aerial vehicles, in smart grids, or in distributed virtual network management applications. Misconfigured or malicious agents participating in a MCA, or an incorrect instantiation of policies can lead to oscillations of the protocol, causing, e.g.e.g., Service Level Agreement (SLA) violations. In this paper, we propose a formal, machine-readable, Max-Consensus Auction model, encoded in the Alloy lightweight modeling language. The model consists of a network of agents applying the MCA mechanisms, instantiated with potentially different policies, and a set of predicates to analyze its convergence properties. We were able to verify that MCA is not resilient against rebidding attacks, and that the protocol fails (to achieve a conflict-free resource allocation) for some specific combinations of policies. Our model can be used to verify, with a "push-button" analysis, the convergence of the MCA mechanism to a conflict-free allocation of a wide range of policy instantiations

    An Agent Based Market Design Methodology for Combinatorial Auctions

    Get PDF
    Auction mechanisms have attracted a great deal of interest and have been used in diverse e-marketplaces. In particular, combinatorial auctions have the potential to play an important role in electronic transactions. Therefore, diverse combinatorial auction market types have been proposed to satisfy market needs. These combinatorial auction types have diverse market characteristics, which require an effective market design approach. This study proposes a comprehensive and systematic market design methodology for combinatorial auctions based on three phases: market architecture design, auction rule design, and winner determination design. A market architecture design is for designing market architecture types by Backward Chain Reasoning. Auction rules design is to design transaction rules for auctions. The specific auction process type is identified by the Backward Chain Reasoning process. Winner determination design is about determining the decision model for selecting optimal bids and auctioneers. Optimization models are identified by Forward Chain Reasoning. Also, we propose an agent based combinatorial auction market design system using Backward and Forward Chain Reasoning. Then we illustrate a design process for the general n-bilateral combinatorial auction market. This study serves as a guideline for practical implementation of combinatorial auction markets design.Combinatorial Auction, Market Design Methodology, Market Architecture Design, Auction Rule Design, Winner Determination Design, Agent-Based System

    An investigation of the trading agent competition : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    The Internet has swept over the whole world. It is influencing almost every aspect of society. The blooming of electronic commerce on the back of the Internet further increases globalisation and free trade. However, the Internet will never reach its full potential as a new electronic media or marketplace unless agents are developed. The trading Agent Competition (TAC), which simulates online auctions, was designed to create a standard problem in the complex domain of electronic marketplaces and to inspire researchers from all over the world to develop distinctive software agents to a common exercise. In this thesis, a detailed study of intelligent software agents and a comprehensive investigation of the Trading Agent Competition will be presented. The design of the Risker Wise agent and a fuzzy logic system predicting the bid increase of the hotel auction in the TAC game will be discussed in detail

    Heuristic bidding strategies for multiple heterogeneous auctions

    No full text
    This paper investigates utility maximising bidding heuristics for agents that participate in multiple heterogeneous auctions, in which the auction format and the starting and closing times can be different. Our strategy allows an agent to procure one or more items and to participate in any number of auctions. For this case, forming an optimal bidding strategy by global utility maximisation is computationally intractable, and so we develop two-stage heuristics that first provide reasonable bidding thresholds with simple strategies before deciding which auctions to participate in. The proposed approach leads to an average gain of at least 24% in agent utility over commonly used benchmarks

    Sellers Competing for Buyers in Online Markets

    Get PDF
    We consider competition between sellers offering similar items in concurrent online auctions, where each seller must set its individual auction parameters (such as the reserve price) in such a way as to attract buyers. We show that there exists a pure Nash equilibrium in the case of two sellers with asymmetric production costs. In addition, we show that, rather than setting a reserve price, a seller can further improve its utility by shill bidding (i.e., pretending to be a buyer in order to bid in its own auction). But, using an evolutionary simulation, we show that this shill bidding introduces inefficiencies within the market. However, we then go on to show that these inefficiencies can be reduced when the mediating auction institution uses appropriate auction fees that deter sellers from submitting shill bids

    Using priced options to solve the exposure problem in sequential auctions

    Get PDF
    We propose a priced options model for solving the exposure problem of bidders with valuation synergies participating in a sequence of online auctions. We consider a setting in which complementary-valued items are offered sequentially by different sellers, who have the choice of either selling their item directly or through a priced option. In our model, the seller fixes the exercise price for this option, and then sells it through a first-price auction. We analyze this model from a decision-theoretic perspective and we show, for a setting where the competition is formed by local bidders (which desire a single item), that using options can increase the expected profit for both sides. Furthermore, we derive the equations that provide minimum and maximum bounds between which the bids of the synergy buyer are expected to fall, in order for both sides of the market to have an incentive to use the options mechanism. Next, we perform an experimental analysis of a market in which multiple synergy buyers are active simultaneously. We show that, despite the extra competition, some synergy buyers may benefit, because sellers are forced to set their exercise prices for options at levels which encourage participation of all buyers.</jats:p

    Complementarities and Collusion in an FCC Spectrum Auction

    Get PDF
    We empirically study bidding in the C Block of the US mobile phone spectrum auctions. Spectrum auctions are conducted using a simultaneous ascending auction design that allows bidders to assemble packages of licenses with geographic complementarities. While this auction design allows the market to find complementarities, the auction might also result in an inefficient equilibrium. In addition, these auctions have equilibria where implicit collusion is sustained through threats of bidding wars. We estimate a structural model in order to test for the presence of complementarities and implicit collusion. The estimation strategy is valid under a wide variety of alternative assumptions about equilibrium in these auctions and is robust to potentially important forms of unobserved heterogeneity. We make suggestions about the design of future spectrum auctions.Technology and Industry
    corecore