1,811 research outputs found

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Performances of a GNSS receiver for space-based applications

    Get PDF
    Space Vehicle (SV) life span depends on its station keeping capability. Station keeping is the ability of the vehicle to maintain position and orientation. Due to external perturbations, the trajectory of the SV derives from the ideal orbit. Actual positioning systems for satellites are mainly based on ground equipment, which means heavy infrastructures. Autonomous positioning and navigation systems using Global Navigation Satellite Systems (GNSS) can then represent a great reduction in platform design and operating costs. Studies have been carried out and the first operational systems, based on GPS receivers, become available. But better availability of service could be obtained considering a receiver able to process GPS and Galileo signals. Indeed Galileo system will be compatible with the current and the modernized GPS system in terms of signals representation and navigation data. The greater availability obtained with such a receiver would allow significant increase of the number of point solutions and performance enhancement. For a mid-term perspective Thales Alenia Space finances a PhD to develop the concept of a reconfigurable receiver able to deal with both the GPS system and the future Galileo system. In this context, the aim of this paper is to assess the performances of a receiver designed for Geosynchronous Earth Orbit (GEO) applications. It is shown that high improvements are obtained with a receiver designed to track both GPS and Galileo satellites. The performance assessments have been used to define the specifications of the future satellite GNSS receiver

    Hardware-software codesign in a high-level synthesis environment

    Get PDF
    Interfacing hardware-oriented high-level synthesis to software development is a computationally hard problem for which no general solution exists. Under special conditions, the hardware-software codesign (system-level synthesis) problem may be analyzed with traditional tools and efficient heuristics. This dissertation introduces a new alternative to the currently used heuristic methods. The new approach combines the results of top-down hardware development with existing basic hardware units (bottom-up libraries) and compiler generation tools. The optimization goal is to maximize operating frequency or minimize cost with reasonable tradeoffs in other properties. The dissertation research provides a unified approach to hardware-software codesign. The improvements over previously existing design methodologies are presented in the frame-work of an academic CAD environment (PIPE). This CAD environment implements a sufficient subset of functions of commercial microelectronics CAD packages. The results may be generalized for other general-purpose algorithms or environments. Reference benchmarks are used to validate the new approach. Most of the well-known benchmarks are based on discrete-time numerical simulations, digital filtering applications, and cryptography (an emerging field in benchmarking). As there is a need for high-performance applications, an additional requirement for this dissertation is to investigate pipelined hardware-software systems\u27 performance and design methods. The results demonstrate that the quality of existing heuristics does not change in the enhanced, hardware-software environment

    Ant Colony Optimization for Coherent Synthesis of Computer System

    Get PDF

    A scalable, portable, FPGA-based implementation of the Unscented Kalman Filter

    Get PDF
    Sustained technological progress has come to a point where robotic/autonomous systems may well soon become ubiquitous. In order for these systems to actually be useful, an increase in autonomous capability is necessary for aerospace, as well as other, applications. Greater aerospace autonomous capability means there is a need for high performance state estimation. However, the desire to reduce costs through simplified development processes and compact form factors can limit performance. A hardware-based approach, such as using a Field Programmable Gate Array (FPGA), is common when high performance is required, but hardware approaches tend to have a more complicated development process when compared to traditional software approaches; greater development complexity, in turn, results in higher costs. Leveraging the advantages of both hardware-based and software-based approaches, a hardware/software (HW/SW) codesign of the Unscented Kalman Filter (UKF), based on an FPGA, is presented. The UKF is split into an application-specific part, implemented in software to retain portability, and a non-application-specific part, implemented in hardware as a parameterisable IP core to increase performance. The codesign is split into three versions (Serial, Parallel and Pipeline) to provide flexibility when choosing the balance between resources and performance, allowing system designers to simplify the development process. Simulation results demonstrating two possible implementations of the design, a nanosatellite application and a Simultaneous Localisation and Mapping (SLAM) application, are presented. These results validate the performance of the HW/SW UKF and demonstrate its portability, particularly in small aerospace systems. Implementation (synthesis, timing, power) details for a variety of situations are presented and analysed to demonstrate how the HW/SW codesign can be scaled for any application

    Cross-layer system reliability assessment framework for hardware faults

    Get PDF
    System reliability estimation during early design phases facilitates informed decisions for the integration of effective protection mechanisms against different classes of hardware faults. When not all system abstraction layers (technology, circuit, microarchitecture, software) are factored in such an estimation model, the delivered reliability reports must be excessively pessimistic and thus lead to unacceptably expensive, over-designed systems. We propose a scalable, cross-layer methodology and supporting suite of tools for accurate but fast estimations of computing systems reliability. The backbone of the methodology is a component-based Bayesian model, which effectively calculates system reliability based on the masking probabilities of individual hardware and software components considering their complex interactions. Our detailed experimental evaluation for different technologies, microarchitectures, and benchmarks demonstrates that the proposed model delivers very accurate reliability estimations (FIT rates) compared to statistically significant but slow fault injection campaigns at the microarchitecture level.Peer ReviewedPostprint (author's final draft

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces
    • …
    corecore