8,397 research outputs found

    Hardness and approximation for the geodetic set problem in some graph classes

    Full text link
    In this paper, we study the computational complexity of finding the \emph{geodetic number} of graphs. A set of vertices SS of a graph GG is a \emph{geodetic set} if any vertex of GG lies in some shortest path between some pair of vertices from SS. The \textsc{Minimum Geodetic Set (MGS)} problem is to find a geodetic set with minimum cardinality. In this paper, we prove that solving the \textsc{MGS} problem is NP-hard on planar graphs with a maximum degree six and line graphs. We also show that unless P=NPP=NP, there is no polynomial time algorithm to solve the \textsc{MGS} problem with sublogarithmic approximation factor (in terms of the number of vertices) even on graphs with diameter 22. On the positive side, we give an O(n3logn)O\left(\sqrt[3]{n}\log n\right)-approximation algorithm for the \textsc{MGS} problem on general graphs of order nn. We also give a 33-approximation algorithm for the \textsc{MGS} problem on the family of solid grid graphs which is a subclass of planar graphs
    corecore