482 research outputs found

    A Two-Level Approach to Large Mixed-Integer Programs with Application to Cogeneration in Energy-Efficient Buildings

    Full text link
    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model (coarsened with respect to variables) and a coarse model (coarsened with respect to both variables and constraints). We coarsen binary variables by selecting a small number of pre-specified daily on/off profiles. We aggregate constraints by partitioning them into groups and summing over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence provides an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. The coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers

    Fuzzy multi-objective bilevel decision making by an approximation Kth-best approach

    Get PDF
    Many industrial decisions problems are decentralized in which decision makers are arranged at two levels, called bilevel decision problems. Bilevel decision making may involve uncertain parameters which appear either in the objective functions or constraints of the leader or the follower or both. Furthermore, the leader and the follower may have multiple conflict decision objectives that should be optimized simultaneously. This study proposes an approximation K th-best approach to solve the fuzzy multi-objective bilevel problem. Two case based examples further illustrate how to use the approach to solve industrial decision problems

    A compromise-based particle swarm optimization algorithm for solving Bi-level programming problems with fuzzy parameters

    Full text link
    © 2015 IEEE. Bi-level programming has arisen to handle decentralized decision-making problems that feature interactive decision entities distributed throughout a bi-level hierarchy. Fuzzy parameters often appear in such a problem in applications and this is called a fuzzy bi-level programming problem. Since the existing approaches lack universality in solving such problems, this study aims to develop a particle swarm optimization (PSO) algorithm to solve fuzzy bi-level programming problems in the linear and nonlinear versions. In this paper, we first present a general fuzzy bi-level programming problem and discuss related theoretical properties based on a fuzzy number ranking method commonly used. A PSO algorithm is then developed to solve the fuzzy bi-level programming problem based on different compromised selections by decision entities on the feasible degree for constraint conditions under fuzziness. Lastly, an illustrative numerical example and two benchmark examples are adopted to state the effectiveness of the compromise-based PSO algorithm
    • …
    corecore