4,952 research outputs found

    Holistic Temporal Situation Interpretation for Traffic Participant Prediction

    Get PDF
    For a profound understanding of traffic situations including a prediction of traf- fic participants’ future motion, behaviors and routes it is crucial to incorporate all available environmental observations. The presence of sensor noise and depen- dency uncertainties, the variety of available sensor data, the complexity of large traffic scenes and the large number of different estimation tasks with diverging requirements require a general method that gives a robust foundation for the de- velopment of estimation applications. In this work, a general description language, called Object-Oriented Factor Graph Modeling Language (OOFGML), is proposed, that unifies formulation of esti- mation tasks from the application-oriented problem description via the choice of variable and probability distribution representation through to the inference method definition in implementation. The different language properties are dis- cussed theoretically using abstract examples. The derivation of explicit application examples is shown for the automated driv- ing domain. A domain-specific ontology is defined which forms the basis for four exemplary applications covering the broad spectrum of estimation tasks in this domain: Basic temporal filtering, ego vehicle localization using advanced interpretations of perceived objects, road layout perception utilizing inter-object dependencies and finally highly integrated route, behavior and motion estima- tion to predict traffic participant’s future actions. All applications are evaluated as proof of concept and provide an example of how their class of estimation tasks can be represented using the proposed language. The language serves as a com- mon basis and opens a new field for further research towards holistic solutions for automated driving

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior

    Get PDF
    Abstract—Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, inter- active motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behaviour as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behaviour, from prediction of individual pedestrians’ likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behaviour, high-level psychological and social modelling of pedestrian behaviour still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behaviour, but much work is still needed to translate them into quantitative algorithms for practical AV control

    A Systematic Survey of Control Techniques and Applications: From Autonomous Vehicles to Connected and Automated Vehicles

    Full text link
    Vehicle control is one of the most critical challenges in autonomous vehicles (AVs) and connected and automated vehicles (CAVs), and it is paramount in vehicle safety, passenger comfort, transportation efficiency, and energy saving. This survey attempts to provide a comprehensive and thorough overview of the current state of vehicle control technology, focusing on the evolution from vehicle state estimation and trajectory tracking control in AVs at the microscopic level to collaborative control in CAVs at the macroscopic level. First, this review starts with vehicle key state estimation, specifically vehicle sideslip angle, which is the most pivotal state for vehicle trajectory control, to discuss representative approaches. Then, we present symbolic vehicle trajectory tracking control approaches for AVs. On top of that, we further review the collaborative control frameworks for CAVs and corresponding applications. Finally, this survey concludes with a discussion of future research directions and the challenges. This survey aims to provide a contextualized and in-depth look at state of the art in vehicle control for AVs and CAVs, identifying critical areas of focus and pointing out the potential areas for further exploration

    Contextual information aided target tracking and path planning for autonomous ground vehicles

    Get PDF
    Recently, autonomous vehicles have received worldwide attentions from academic research, automotive industry and the general public. In order to achieve a higher level of automation, one of the most fundamental requirements of autonomous vehicles is the capability to respond to internal and external changes in a safe, timely and appropriate manner. Situational awareness and decision making are two crucial enabling technologies for safe operation of autonomous vehicles. This thesis presents a solution for improving the automation level of autonomous vehicles in both situational awareness and decision making aspects by utilising additional domain knowledge such as constraints and influence on a moving object caused by environment and interaction between different moving objects. This includes two specific sub-systems, model based target tracking in environmental perception module and motion planning in path planning module. In the first part, a rigorous Bayesian framework is developed for pooling road constraint information and sensor measurement data of a ground vehicle to provide better situational awareness. Consequently, a new multiple targets tracking (MTT) strategy is proposed for solving target tracking problems with nonlinear dynamic systems and additional state constraints. Besides road constraint information, a vehicle movement is generally affected by its surrounding environment known as interaction information. A novel dynamic modelling approach is then proposed by considering the interaction information as virtual force which is constructed by involving the target state, desired dynamics and interaction information. The proposed modelling approach is then accommodated in the proposed MTT strategy for incorporating different types of domain knowledge in a comprehensive manner. In the second part, a new path planning strategy for autonomous vehicles operating in partially known dynamic environment is suggested. The proposed MTT technique is utilized to provide accurate on-board tracking information with associated level of uncertainty. Based on the tracking information, a path planning strategy is developed to generate collision free paths by not only predicting the future states of the moving objects but also taking into account the propagation of the associated estimation uncertainty within a given horizon. To cope with a dynamic and uncertain road environment, the strategy is implemented in a receding horizon fashion

    Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

    Get PDF
    This thesis presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The uncertainty in the environment arises by the fact that the intentions as well as the future trajectories of the surrounding drivers cannot be measured directly but can only be estimated in a probabilistic fashion. Even the perception of objects is uncertain due to sensor noise or possible occlusions. When driving in such environments, the autonomous car must predict the behavior of the other drivers and plan safe, comfortable and legal trajectories. Planning such trajectories requires robust decision making when several high-level options are available for the autonomous car. Current planning algorithms for automated driving split the problem into different subproblems, ranging from discrete, high-level decision making to prediction and continuous trajectory planning. This separation of one problem into several subproblems, combined with rule-based decision making, leads to sub-optimal behavior. This thesis presents a global, closed-loop formulation for the motion planning problem which intertwines action selection and corresponding prediction of the other agents in one optimization problem. The global formulation allows the planning algorithm to make the decision for certain high-level options implicitly. Furthermore, the closed-loop manner of the algorithm optimizes the solution for various, future scenarios concerning the future behavior of the other agents. Formulating prediction and planning as an intertwined problem allows for modeling interaction, i.e. the future reaction of the other drivers to the behavior of the autonomous car. The problem is modeled as a partially observable Markov decision process (POMDP) with a discrete action and a continuous state and observation space. The solution to the POMDP is a policy over belief states, which contains different reactive plans for possible future scenarios. Surrounding drivers are modeled with interactive, probabilistic agent models to account for their prediction uncertainty. The field of view of the autonomous car is simulated ahead over the whole planning horizon during the optimization of the policy. Simulating the possible, corresponding, future observations allows the algorithm to select actions that actively reduce the uncertainty of the world state. Depending on the scenario, the behavior of the autonomous car is optimized in (combined lateral and) longitudinal direction. The algorithm is formulated in a generic way and solved online, which allows for applying the algorithm on various road layouts and scenarios. While such a generic problem formulation is intractable to solve exactly, this thesis demonstrates how a sufficiently good approximation to the optimal policy can be found online. The problem is solved by combining state of the art Monte Carlo tree search algorithms with near-optimal, domain specific roll-outs. The algorithm is evaluated in scenarios such as the crossing of intersections under unknown intentions of other crossing vehicles, interactive lane changes in narrow gaps and decision making at intersections with large occluded areas. It is shown that the behavior of the closed-loop planner is less conservative than comparable open-loop planners. More precisely, it is even demonstrated that the policy enables the autonomous car to drive in a similar way as an omniscient planner with full knowledge of the scene. It is also demonstrated how the autonomous car executes actions to actively gather more information about the surrounding and to reduce the uncertainty of its belief state

    Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

    Get PDF
    This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty

    Towards an Architecture for Semiautonomous Robot Telecontrol Systems.

    Get PDF
    The design and development of a computational system to support robot–operator collaboration is a challenging task, not only because of the overall system complexity, but furthermore because of the involvement of different technical and scientific disciplines, namely, Software Engineering, Psychology and Artificial Intelligence, among others. In our opinion the approach generally used to face this type of project is based on system architectures inherited from the development of autonomous robots and therefore fails to incorporate explicitly the role of the operator, i.e. these architectures lack a view that help the operator to see him/herself as an integral part of the system. The goal of this paper is to provide a human-centered paradigm that makes it possible to create this kind of view of the system architecture. This architectural description includes the definition of the role of operator and autonomous behaviour of the robot, it identifies the shared knowledge, and it helps the operator to see the robot as an intentional being as himself/herself

    Context-based Information Fusion: A survey and discussion

    Get PDF
    This survey aims to provide a comprehensive status of recent and current research on context-based Information Fusion (IF) systems, tracing back the roots of the original thinking behind the development of the concept of \u201ccontext\u201d. It shows how its fortune in the distributed computing world eventually permeated in the world of IF, discussing the current strategies and techniques, and hinting possible future trends. IF processes can represent context at different levels (structural and physical constraints of the scenario, a priori known operational rules between entities and environment, dynamic relationships modelled to interpret the system output, etc.). In addition to the survey, several novel context exploitation dynamics and architectural aspects peculiar to the fusion domain are presented and discussed
    • …
    corecore