221 research outputs found

    Adaptive, Anisotropic and Hierarchical cones of Discrete Convex functions

    Full text link
    We address the discretization of optimization problems posed on the cone of convex functions, motivated in particular by the principal agent problem in economics, which models the impact of monopoly on product quality. Consider a two dimensional domain, sampled on a grid of N points. We show that the cone of restrictions to the grid of convex functions is in general characterized by N^2 linear inequalities; a direct computational use of this description therefore has a prohibitive complexity. We thus introduce a hierarchy of sub-cones of discrete convex functions, associated to stencils which can be adaptively, locally, and anisotropically refined. Numerical experiments optimize the accuracy/complexity tradeoff through the use of a-posteriori stencil refinement strategies.Comment: 35 pages, 11 figures. (Second version fixes a small bug in Lemma 3.2. Modifications are anecdotic.

    Discrete Geometric Structures in Homogenization and Inverse Homogenization with application to EIT

    Get PDF
    We introduce a new geometric approach for the homogenization and inverse homogenization of the divergence form elliptic operator with rough conductivity coefficients σ(x)\sigma(x) in dimension two. We show that conductivity coefficients are in one-to-one correspondence with divergence-free matrices and convex functions s(x)s(x) over the domain Ω\Omega. Although homogenization is a non-linear and non-injective operator when applied directly to conductivity coefficients, homogenization becomes a linear interpolation operator over triangulations of Ω\Omega when re-expressed using convex functions, and is a volume averaging operator when re-expressed with divergence-free matrices. Using optimal weighted Delaunay triangulations for linearly interpolating convex functions, we obtain an optimally robust homogenization algorithm for arbitrary rough coefficients. Next, we consider inverse homogenization and show how to decompose it into a linear ill-posed problem and a well-posed non-linear problem. We apply this new geometric approach to Electrical Impedance Tomography (EIT). It is known that the EIT problem admits at most one isotropic solution. If an isotropic solution exists, we show how to compute it from any conductivity having the same boundary Dirichlet-to-Neumann map. It is known that the EIT problem admits a unique (stable with respect to GG-convergence) solution in the space of divergence-free matrices. As such we suggest that the space of convex functions is the natural space in which to parameterize solutions of the EIT problem

    Anisotropic Mesh Adaptation for Image Representation

    Get PDF
    Triangular meshes have gained much interest in image representation and have been widely used in image processing. This paper introduces a framework of anisotropic mesh adaptation (AMA) methods to image representation and proposes a GPRAMA method that is based on AMA and greedy-point removal (GPR) scheme. Different than many other methods that triangulate sample points to form the mesh, the AMA methods start directly with a triangular mesh and then adapt the mesh based on a user-defined metric tensor to represent the image. The AMA methods have clear mathematical framework and provides flexibility for both image representation and image reconstruction. A mesh patching technique is developed for the implementation of the GPRAMA method, which leads to an improved version of the popular GPRFS-ED method. The GPRAMA method can achieve better quality than the GPRFS-ED method but with lower computational cost.Comment: 25 pages, 15 figure

    Optimally Adapted Meshes for Finite Elements of Arbitrary Order and W1p Norms

    Full text link
    Given a function f defined on a bidimensional bounded domain and a positive integer N, we study the properties of the triangulation that minimizes the distance between f and its interpolation on the associated finite element space, over all triangulations of at most N elements. The error is studied in the W1p norm and we consider Lagrange finite elements of arbitrary polynomial order m-1. We establish sharp asymptotic error estimates as N tends to infinity when the optimal anisotropic triangulation is used. A similar problem has been studied earlier, but with the error measured in the Lp norm. The extension of this analysis to the W1p norm is crucial in order to match more closely the needs of numerical PDE analysis, and it is not straightforward. In particular, the meshes which satisfy the optimal error estimate are characterized by a metric describing the local aspect ratio of each triangle and by a geometric constraint on their maximal angle, a second feature that does not appear for the Lp error norm. Our analysis also provides with practical strategies for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed multiplicative constant. We discuss the extension of our results to finite elements on simplicial partitions of a domain of arbitrary dimension, and we provide with some numerical illustration in two dimensions.Comment: 37 pages, 6 figure

    Adaptive multiresolution analysis based on anisotropic triangulations

    Get PDF
    A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function of two variables, the algorithm produces a hierarchy of triangulations and piecewise polynomial approximations on these triangulations. The refinement procedure consists in bisecting a triangle T in a direction which is chosen so as to minimize the local approximation error in some prescribed norm between the approximated function and its piecewise polynomial approximation after T is bisected. The hierarchical structure allows us to derive various approximation tools such as multiresolution analysis, wavelet bases, adaptive triangulations based either on greedy or optimal CART trees, as well as a simple encoding of the corresponding triangulations. We give a general proof of convergence in the Lp norm of all these approximations. Numerical tests performed in the case of piecewise linear approximation of functions with analytic expressions or of numerical images illustrate the fact that the refinement procedure generates triangles with an optimal aspect ratio (which is dictated by the local Hessian of of the approximated function in case of C2 functions).Comment: 19 pages, 7 figure

    Constructing Intrinsic Delaunay Triangulations of Submanifolds

    Get PDF
    We describe an algorithm to construct an intrinsic Delaunay triangulation of a smooth closed submanifold of Euclidean space. Using results established in a companion paper on the stability of Delaunay triangulations on ÎŽ\delta-generic point sets, we establish sampling criteria which ensure that the intrinsic Delaunay complex coincides with the restricted Delaunay complex and also with the recently introduced tangential Delaunay complex. The algorithm generates a point set that meets the required criteria while the tangential complex is being constructed. In this way the computation of geodesic distances is avoided, the runtime is only linearly dependent on the ambient dimension, and the Delaunay complexes are guaranteed to be triangulations of the manifold
    • 

    corecore