3 research outputs found

    PPI-IRO: A two-stage method for protein-protein interaction extraction based on interaction relation ontology

    Full text link
    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identifi cation of biological regulatory networks. This paper presents a novel method based on the idea of Interaction Relation Ontology (IRO), which specifi es and organises words of various proteins interaction relationships. Our method is a two-stage PPI extraction method. At fi rst, IRO is applied in a binary classifi er to determine whether sentences contain a relation or not. Then, IRO is taken to guide PPI extraction by building sentence dependency parse tree. Comprehensive and quantitative evaluations and detailed analyses are used to demonstrate the signifi cant performance of IRO on relation sentences classifi cation and PPI extraction. Our PPI extraction method yielded a recall of around 80% and 90% and an F1 of around 54% and 66% on corpora of AIMed and Bioinfer, respectively, which are superior to most existing extraction methods. Copyright © 2014 Inderscience Enterprises Ltd

    Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    Get PDF
    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.National Institutes of Health (U.S.) (NIH grant P50-GM68762)National Institutes of Health (U.S.) (Grant U54-CA112967)United States. Dept. of Defense (Institute for Collaborative Biotechnologies

    Development of constrained fuzzy logic for modeling biological regulatory networks and predicting contextual therapeutic effects

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 199-213).Upon exposure to environmental cues, protein modifications form a complex signaling network that dictates cellular response. In this thesis, we develop methods for using continuous logic-based models to aide our understanding of these signaling networks and facilitate data interpretation. We present a novel modeling framework called constrained fuzzy logic (cFL) that maintains a simple logic-based description of interactions with AND, OR, and NOT gates, but allows for intermediate species activities with mathematical functions relating input and output values (transfer functions). We first train a prior knowledge network (PKN) to data with cFL, which reveals what aspects of the dataset agree or disagree with prior knowledge. The cFL models are trained to a dataset describing signaling proteins in a hepatocellular carcinoma cell line after exposure to ligand cues in the presence or absence of small molecule inhibitors. We find that multiple models with differing topology and parameters explain the data equally well, and it is crucial to consider this non-identifiability during model training and subsequence analysis. Our trained models generate new biological understanding of network crosstalk as well as quantitative predictions of signaling protein activation. In our next applications of cFL, we explore the ability of models either constructed based solely on prior knowledge or trained to dedicated biochemical data to make predictions that answer the following questions: 1) What perturbations to species in the system are effective at accomplishing a clinical goal? and 2) In what environmental conditions are these perturbations effective? We find that we are able to make accurate predictions in both cases. Thus, we offer cFL as a flexible modeling methodology to assist data interpretation and hypothesis generation for choice of therapeutic targets.by Melody K. Morris.Ph.D
    corecore