910 research outputs found

    Performance of the Fuzzy Vault for Multiple Fingerprints (Extended Version)

    Full text link
    The fuzzy vault is an error tolerant authentication method that ensures the privacy of the stored reference data. Several publications have proposed the application of the fuzzy vault to fingerprints, but the results of subsequent analyses indicate that a single finger does not contain sufficient information for a secure implementation. In this contribution, we present an implementation of a fuzzy vault based on minutiae information in several fingerprints aiming at a security level comparable to current cryptographic applications. We analyze and empirically evaluate the security, efficiency, and robustness of the construction and several optimizations. The results allow an assessment of the capacity of the scheme and an appropriate selection of parameters. Finally, we report on a practical simulation conducted with ten users.Comment: This article represents the full paper of a short version to appear in the Proceedings of BIOSIG 2010 (copyright of Gesellschaft f\"ur Informatik

    FingerNet: An Unified Deep Network for Fingerprint Minutiae Extraction

    Full text link
    Minutiae extraction is of critical importance in automated fingerprint recognition. Previous works on rolled/slap fingerprints failed on latent fingerprints due to noisy ridge patterns and complex background noises. In this paper, we propose a new way to design deep convolutional network combining domain knowledge and the representation ability of deep learning. In terms of orientation estimation, segmentation, enhancement and minutiae extraction, several typical traditional methods performed well on rolled/slap fingerprints are transformed into convolutional manners and integrated as an unified plain network. We demonstrate that this pipeline is equivalent to a shallow network with fixed weights. The network is then expanded to enhance its representation ability and the weights are released to learn complex background variance from data, while preserving end-to-end differentiability. Experimental results on NIST SD27 latent database and FVC 2004 slap database demonstrate that the proposed algorithm outperforms the state-of-the-art minutiae extraction algorithms. Code is made publicly available at: https://github.com/felixTY/FingerNet

    An Effective Fingerprint Verification Technique

    Full text link
    This paper presents an effective method for fingerprint verification based on a data mining technique called minutiae clustering and a graph-theoretic approach to analyze the process of fingerprint comparison to give a feature space representation of minutiae and to produce a lower bound on the number of detectably distinct fingerprints. The method also proving the invariance of each individual fingerprint by using both the topological behavior of the minutiae graph and also using a distance measure called Hausdorff distance.The method provides a graph based index generation mechanism of fingerprint biometric data. The self-organizing map neural network is also used for classifying the fingerprints.Comment: Submitted to Journal of Computer Science and Engineering, see http://sites.google.com/site/jcseuk/volume-1-issue-1-may-201

    Latent Fingerprint Registration via Matching Densely Sampled Points

    Full text link
    Latent fingerprint matching is a very important but unsolved problem. As a key step of fingerprint matching, fingerprint registration has a great impact on the recognition performance. Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae, and hence will certainly fail when there are no sufficient number of extracted minutiae due to small fingerprint area or poor image quality. Minutiae extraction has become the bottleneck of latent fingerprint registration. In this paper, we propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints through a dense fingerprint patch alignment and matching procedure. Given a pair of fingerprints to match, we bypass the minutiae extraction step and take uniformly sampled points as key points. Then the proposed patch alignment and matching algorithm compares all pairs of sampling points and produces their similarities along with alignment parameters. Finally, a set of consistent correspondences are found by spectral clustering. Extensive experiments on NIST27 database and MOLF database show that the proposed method achieves the state-of-the-art registration performance, especially under challenging conditions

    Automated Latent Fingerprint Recognition

    Full text link
    Latent fingerprints are one of the most important and widely used evidence in law enforcement and forensic agencies worldwide. Yet, NIST evaluations show that the performance of state-of-the-art latent recognition systems is far from satisfactory. An automated latent fingerprint recognition system with high accuracy is essential to compare latents found at crime scenes to a large collection of reference prints to generate a candidate list of possible mates. In this paper, we propose an automated latent fingerprint recognition algorithm that utilizes Convolutional Neural Networks (ConvNets) for ridge flow estimation and minutiae descriptor extraction, and extract complementary templates (two minutiae templates and one texture template) to represent the latent. The comparison scores between the latent and a reference print based on the three templates are fused to retrieve a short candidate list from the reference database. Experimental results show that the rank-1 identification accuracies (query latent is matched with its true mate in the reference database) are 64.7% for the NIST SD27 and 75.3% for the WVU latent databases, against a reference database of 100K rolled prints. These results are the best among published papers on latent recognition and competitive with the performance (66.7% and 70.8% rank-1 accuracies on NIST SD27 and WVU DB, respectively) of a leading COTS latent Automated Fingerprint Identification System (AFIS). By score-level (rank-level) fusion of our system with the commercial off-the-shelf (COTS) latent AFIS, the overall rank-1 identification performance can be improved from 64.7% and 75.3% to 73.3% (74.4%) and 76.6% (78.4%) on NIST SD27 and WVU latent databases, respectively

    Minutia Texture Cylinder Codes for fingerprint matching

    Full text link
    Minutia Cylinder Codes (MCC) are minutiae based fingerprint descriptors that take into account minutiae information in a fingerprint image for fingerprint matching. In this paper, we present a modification to the underlying information of the MCC descriptor and show that using different features, the accuracy of matching is highly affected by such changes. MCC originally being a minutia only descriptor is transformed into a texture descriptor. The transformation is from minutiae angular information to orientation, frequency and energy information using Short Time Fourier Transform (STFT) analysis. The minutia cylinder codes are converted to minutiae texture cylinder codes (MTCC). Based on a fixed set of parameters, the proposed changes to MCC show improved performance on FVC 2002 and 2004 data sets and surpass the traditional MCC performance

    Bio-Authentication based Secure Transmission System using Steganography

    Full text link
    Biometrics deals with identity verification of an individual by using certain physiological or behavioral features associated with a person. Biometric identification systems using fingerprints patterns are called AFIS (Automatic Fingerprint Identification System). In this paper a composite method for Fingerprint recognition is considered using a combination of Fast Fourier Transform (FFT) and Sobel Filters for improvement of a poor quality fingerprint image. Steganography hides messages inside other messages in such a way that an "adversary" would not even know a secret message were present. The objective of our paper is to make a bio-secure system. In this paper bio-authentication has been implemented in terms of finger print recognition and the second part of the paper is an interactive steganographic system hides the user's data by two options- creating a songs list or hiding the data in an image.Comment: IEEE Publication format, International Journal of Computer Science and Information Security, IJCSIS, Vol. 8 No. 1, April 2010, USA. ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Palmprint image registration using convolutional neural networks and Hough transform

    Full text link
    Minutia-based palmprint recognition systems has got lots of interest in last two decades. Due to the large number of minutiae in a palmprint, approximately 1000 minutiae, the matching process is time consuming which makes it unpractical for real time applications. One way to address this issue is aligning all palmprint images to a reference image and bringing them to a same coordinate system. Bringing all palmprint images to a same coordinate system, results in fewer computations during minutia matching. In this paper, using convolutional neural network (CNN) and generalized Hough transform (GHT), we propose a new method to register palmprint images accurately. This method, finds the corresponding rotation and displacement (in both x and y direction) between the palmprint and a reference image. Exact palmprint registration can enhance the speed and the accuracy of matching process. Proposed method is capable of distinguishing between left and right palmprint automatically which helps to speed up the matching process. Furthermore, designed structure of CNN in registration stage, gives us the segmented palmprint image from background which is a pre-processing step for minutia extraction. The proposed registration method followed by minutia-cylinder code (MCC) matching algorithm has been evaluated on the THUPALMLAB database, and the results show the superiority of our algorithm over most of the state-of-the-art algorithms.Comment: 6 figures, 8 page

    Generation of Biometric key for use in DES

    Full text link
    Cryptography is an important field in the area of data encryption. There are different cryptographic techniques available varying from the simplest to complex. One of the complex symmetric key cryptography techniques is using Data Encryption Standard Algorithm. This paper explores a unique approach to generation of key using fingerprint. The generated key is used as an input key to the DES Algorith

    Persistent homology machine learning for fingerprint classification

    Full text link
    The fingerprint classification problem is to sort fingerprints into pre-determined groups, such as arch, loop, and whorl. It was asserted in the literature that minutiae points, which are commonly used for fingerprint matching, are not useful for classification. We show that, to the contrary, near state-of-the-art classification accuracy rates can be achieved when applying topological data analysis (TDA) to 3-dimensional point clouds of oriented minutiae points. We also apply TDA to fingerprint ink-roll images, which yields a lower accuracy rate but still shows promise, particularly since the only preprocessing is cropping; moreover, combining the two approaches outperforms each one individually. These methods use supervised learning applied to persistent homology and allow us to explore feature selection on barcodes, an important topic at the interface between TDA and machine learning. We test our classification algorithms on the NIST fingerprint database SD-27.Comment: 15 page
    • …
    corecore