8,811 research outputs found

    Precise Null Pointer Analysis Through Global Value Numbering

    Full text link
    Precise analysis of pointer information plays an important role in many static analysis techniques and tools today. The precision, however, must be balanced against the scalability of the analysis. This paper focusses on improving the precision of standard context and flow insensitive alias analysis algorithms at a low scalability cost. In particular, we present a semantics-preserving program transformation that drastically improves the precision of existing analyses when deciding if a pointer can alias NULL. Our program transformation is based on Global Value Numbering, a scheme inspired from compiler optimizations literature. It allows even a flow-insensitive analysis to make use of branch conditions such as checking if a pointer is NULL and gain precision. We perform experiments on real-world code to measure the overhead in performing the transformation and the improvement in the precision of the analysis. We show that the precision improves from 86.56% to 98.05%, while the overhead is insignificant.Comment: 17 pages, 1 section in Appendi

    A study of systems implementation languages for the POCCNET system

    Get PDF
    The results are presented of a study of systems implementation languages for the Payload Operations Control Center Network (POCCNET). Criteria are developed for evaluating the languages, and fifteen existing languages are evaluated on the basis of these criteria

    Quantifying Timing Leaks and Cost Optimisation

    Full text link
    We develop a new notion of security against timing attacks where the attacker is able to simultaneously observe the execution time of a program and the probability of the values of low variables. We then show how to measure the security of a program with respect to this notion via a computable estimate of the timing leakage and use this estimate for cost optimisation.Comment: 16 pages, 2 figures, 4 tables. A shorter version is included in the proceedings of ICICS'08 - 10th International Conference on Information and Communications Security, 20-22 October, 2008 Birmingham, U

    Keyword Search on RDF Graphs - A Query Graph Assembly Approach

    Full text link
    Keyword search provides ordinary users an easy-to-use interface for querying RDF data. Given the input keywords, in this paper, we study how to assemble a query graph that is to represent user's query intention accurately and efficiently. Based on the input keywords, we first obtain the elementary query graph building blocks, such as entity/class vertices and predicate edges. Then, we formally define the query graph assembly (QGA) problem. Unfortunately, we prove theoretically that QGA is a NP-complete problem. In order to solve that, we design some heuristic lower bounds and propose a bipartite graph matching-based best-first search algorithm. The algorithm's time complexity is O(k2lâ‹…l3l)O(k^{2l} \cdot l^{3l}), where ll is the number of the keywords and kk is a tunable parameter, i.e., the maximum number of candidate entity/class vertices and predicate edges allowed to match each keyword. Although QGA is intractable, both ll and kk are small in practice. Furthermore, the algorithm's time complexity does not depend on the RDF graph size, which guarantees the good scalability of our system in large RDF graphs. Experiments on DBpedia and Freebase confirm the superiority of our system on both effectiveness and efficiency

    Graphical modeling of stochastic processes driven by correlated errors

    Full text link
    We study a class of graphs that represent local independence structures in stochastic processes allowing for correlated error processes. Several graphs may encode the same local independencies and we characterize such equivalence classes of graphs. In the worst case, the number of conditions in our characterizations grows superpolynomially as a function of the size of the node set in the graph. We show that deciding Markov equivalence is coNP-complete which suggests that our characterizations cannot be improved upon substantially. We prove a global Markov property in the case of a multivariate Ornstein-Uhlenbeck process which is driven by correlated Brownian motions.Comment: 43 page

    Master of Science

    Get PDF
    thesisTo minimize resource consumption and maximize performance, computer architecture research has been investigating approaches that may compute inaccurate solutions. Such hardware inaccuracies may induce a wide variety of program behaviors which are not obs
    • …
    corecore