17,635 research outputs found

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    Design and Evaluation of a Bioinspired Tendon-Driven 3D-Printed Robotic Eye with Active Vision Capabilities

    Full text link
    The field of robotics has seen significant advancements in recent years, particularly in the development of humanoid robots. One area of research that has yet to be fully explored is the design of robotic eyes. In this paper, we propose a computer-aided 3D design scheme for a robotic eye that incorporates realistic appearance, natural movements, and efficient actuation. The proposed design utilizes a tendon-driven actuation mechanism, which offers a broad range of motion capabilities. The use of the minimum number of servos for actuation, one for each agonist-antagonist pair of muscles, makes the proposed design highly efficient. Compared to existing ones in the same class, our designed robotic eye comprises aesthetic and realistic features. We evaluate the robot's performance using a vision-based controller, which demonstrates the effectiveness of the proposed design in achieving natural movement, and efficient actuation. The experiment code, toolbox, and printable 3D sketches of our design have been open-sourced

    Biologically Inspired Visual System Architecture for Object Recognition in Autonomous Systems

    Full text link
    Findings in recent years on the sensitivity of convolutional neural networks to additive noise, light conditions and to the wholeness of the training dataset, indicate that this technology still lacks the robustness needed for the autonomous robotic industry. In an attempt to bring computer vision algorithms closer to the capabilities of a human operator, the mechanisms of the human visual system was analyzed in this work. Recent studies show that the mechanisms behind the recognition process in the human brain include continuous generation of predictions based on prior knowledge of the world. These predictions enable rapid generation of contextual hypotheses that bias the outcome of the recognition process. This mechanism is especially advantageous in situations of uncertainty, when visual input is ambiguous. In addition, the human visual system continuously updates its knowledge about the world based on the gaps between its prediction and the visual feedback. Convolutional neural networks are feed forward in nature and lack such top-down contextual attenuation mechanisms. As a result, although they process massive amounts of visual information during their operation, the information is not transformed into knowledge that can be used to generate contextual predictions and improve their performance. In this work, an architecture was designed that aims to integrate the concepts behind the top-down prediction and learning processes of the human visual system with the state of the art bottom-up object recognition models, e.g., deep convolutional neural networks. The work focuses on two mechanisms of the human visual system: anticipation-driven perception and reinforcement-driven learning. Imitating these top-down mechanisms, together with the state of the art bottom-up feed-forward algorithms, resulted in an accurate, robust, and continuously improving target recognition model

    The case of communicative intransitive gestures: further developments on a dual mechanism for motor control of action in imitation

    Get PDF
    Imitation is classically thought of as a mechanism that allows learning from demonstration. Several are the models that offer an explanation of how human imitation is accomplished. Observations of brain damaged patients, healthy subjects and brain imaging data can be found in support of both unique mechanistic models and dual route models (Chapter 1) . Two sets of evidence from neuropsychology and normal experimental psychology support the need of independent mechanisms that can account for either imitation of novel, meaningless actions or familiar, meaningful actions..
    • …
    corecore