2 research outputs found

    MDMP: Managed Data Message Passing

    Full text link
    MDMP is a new parallel programming approach that aims to provide users with an easy way to add parallelism to programs, optimise the message passing costs of traditional scientific simulation algorithms, and enable existing MPI-based parallel programs to be optimised and extended without requiring the whole code to be re-written from scratch. MDMP utilises a directives based approach to enable users to specify what communications should take place in the code, and then implements those communications for the user in an optimal manner using both the information provided by the user and data collected from instrumenting the code and gathering information on the data to be communicated. This work will present the basic concepts and functionality of MDMP and discuss the performance that can be achieved using our prototype implementation of MDMP on some model scientific simulation applications.Comment: Submitted to SC13, 10 pages, 5 figure

    An adaptive mesh refinement benchmark for modern parallel programming languages

    No full text
    We present an Adaptive Mesh Refinement benchmark for evaluating programmability and performance of modern parallel programming languages. Benchmarks employed today by language developing teams, originally designed for performance evaluation of computer architectures, do not fully capture the complexity of state-of-the-art computational software systems running on today’s parallel machines or to be run on the emerging ones from the multi-cores to the peta-scale High Productivity Computer Systems. This benchmark extracted from a real application framework presents challenges for a programming language in both expressiveness and performance. It consists of an infrastructure for finite difference calculations on block-structured adaptive meshes and a solver for elliptic Partial Differential Equations built on this infrastructure. Adaptive Mesh Refinement algorithms are challenging to implement due to the irregularity introduced by local mesh refinement. We describe those challenges posed by this benchmark through two reference implementations (C++/Fortran/MPI and Titanium) and in the context of three programming models
    corecore