424 research outputs found

    Distributed Control of Multi-Robot Deployment Motion

    Get PDF

    Distributed, adaptive deployment for nonholonomic mobile sensor networks : theory and experiments

    Get PDF
    In this work we show the Lyapunov stability and convergence of an adaptive and decentralized coverage control for a team of mobile sensors. This new approach assumes nonholonomic sensors rather than the usual holonomic sensors found in the literature. The kinematics of the unicycle model and a nonlinear control law in polar coordinates are used in order to prove the stability of the controller applied over a team of mobile sensors. This controller is adaptive, which means that the mobile sensors are able to estimate and map a density function in the sampling space without a previous knowledge of the environment. The controller is decentralized, which means that each mobile sensor has its own estimate and computes its own control input based on local information. In order to guarantee the estimate convergence, the mobile sensors implement a consensus protocol in continuous time assuming a fixed network topology and zero communication delays. The convergence and feasibility of the coverage control algorithm are verified through simulations in Matlab and Stage. The Matlab simulations consider only the kinematics of the mobile sensors and the Stage simulations consider the dynamics and the kinematics of the sensors. The Matlab simulations show successful results since the sensor network carries out the coverage task and distributes itself over the estimated density function. The adaptive law which is defined by a differential equation must be approximated by a difference equation to be implementable in Stage. The Stage simulations show positive results, however, the system is not able to achieve an accurate estimation of the density function. In spite of that, the sensors carry out the coverage task distributing themselves over the sampling space. Furthermore, some experiments are carried out using a team of four Pioneer 3-AT robots sensing a piecewise constant light distribution function. The experimental results are satisfactory since the robots carry out the coverage task. However, the accuracy of the estimation is affected by the approximation of the adaptation law by difference equations, the number of robots and sensor sensitivity. Based on the results of this research, the decentralized adaptive coverage control for nonholonomic vehicles has been analyzed from a theoretical approach and validated through simulation and experimentation with positive results. As a future work we will investigate: (i) new techniques to improve the implementation of the adaptive law in real time,(ii) the consideration of the dynamics of the mobile sensors, and (iii) the stability and convergence of the adaptive law for continuous-time variant density function

    Analysis of multi-agent systems under varying degrees of trust, cooperation, and competition

    Full text link
    Multi-agent systems rely heavily on coordination and cooperation to achieve a variety of tasks. It is often assumed that these agents will be fully cooperative, or have reliable and equal performance among group members. Instead, we consider cooperation as a spectrum of possible interactions, ranging from performance variations within the group to adversarial agents. This thesis examines several scenarios where cooperation and performance are not guaranteed. Potential applications include sensor coverage, emergency response, wildlife management, tracking, and surveillance. We use geometric methods, such as Voronoi tessellations, for design insight and Lyapunov-based stability theory to analyze our proposed controllers. Performance is verified through simulations and experiments on a variety of ground and aerial robotic platforms. First, we consider the problem of Voronoi-based coverage control, where a group of robots must spread out over an environment to provide coverage. Our approach adapts online to sensing and actuation performance variations with the group. The robots have no prior knowledge of their relative performance, and in a distributed fashion, compensate by assigning weaker robots a smaller portion of the environment. Next, we consider the problem of multi-agent herding, akin to shepherding. Here, a group of dog-like robots must drive a herd of non-cooperative sheep-like agents around the environment. Our key insight in designing the control laws for the herders is to enforce geometrical relationships that allow for the combined system dynamics to reduce to a single nonholonomic vehicle. We also investigate the cooperative pursuit of an evader by a group of quadrotors in an environment with no-fly zones. While the pursuers cannot enter the no-fly zones, the evader moves freely through the zones to avoid capture. Using tools for Voronoi-based coverage control, we provide an algorithm to distribute the pursuers around the zone's boundary and minimize capture time once the evader emerges. Finally, we present an algorithm for the guaranteed capture of multiple evaders by one or more pursuers in a bounded, convex environment. The pursuers utilize properties of the evader's Voronoi cell to choose a control strategy that minimizes the safe-reachable area of the evader, which in turn leads to the evader's capture

    Multistep predictions for adaptive sampling in mobile robotic sensor networks using proximal ADMM

    Get PDF
    This paper presents a novel approach, using multi-step predictions, to the adaptive sampling problem for efficient monitoring of environmental spatial phenomena in a mobile sensor network. We employ a Gaussian process to represent the spatial field of interest, which is then used to predict the field at unmeasured locations. The adaptive sampling problem aims to drive the mobile sensors to optimally navigate the environment while the sensors adaptively take measurements of the spatial phenomena at each sampling step. To this end, an optimal sampling criterion based on conditional entropy is proposed, which minimizes the prediction uncertainty of the Gaussian process model. By predicting the measurements the mobile sensors potentially take in a finite horizon of multiple future sampling steps and exploiting the chain rule of the conditional entropy, a multi-step-ahead adaptive sampling optimization problem is formulated. Its objective is to find the optimal sampling paths for the mobile sensors in multiple sampling steps ahead. Robot-robot and robot-obstacle collision avoidance is formulated as mixed-integer constraints. Compared with the single-step-ahead approach typically adopted in the literature, our approach provides better navigation, deployment, and data collection with more informative sensor readings. However, the resulting mixed-integer nonlinear program is highly complex and intractable. We propose to employ the proximal alternating direction method of multipliers to efficiently solve this problem. More importantly, the solution obtained by the proposed algorithm is theoretically guaranteed to converge to a stationary value. The effectiveness of our proposed approach was extensively validated by simulation using a real-world dataset, which showed highly promising results. © 2013 IEEE

    Distributed Cooperative Deployment of Heterogeneous Autonomous Agents: A Pareto Suboptimal Approach

    Get PDF
    The paper presents a distributed cooperative control law for autonomous deployment of a team of heterogeneous agents. Deployment problems deal with the coordination of groups of agents in order to cover one or more assigned areas of the operational space. In particular, we consider a team composed by agents with different dynamics, sensing capabilities, and resources available for the deployment. Sensing heterogeneity is addressed by means of the descriptor function framework, an abstraction that provides a set of mathematical tools for describing both agent sensing capabilities and the desired deployment. A distributed cooperative control law is then formally derived nding a suboptimal solution of a cooperative dierential game, where the agents are interested in achieving the requested deployment, while optimizing the resources usage according to their dynamics. The control law eectiveness is proven by theoretical arguments, and supported by numerical simulations
    • …
    corecore