183,976 research outputs found

    Managing concurrent QoS assured Multicast sessions using a Programmable Network Architecture

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceIn this paper we address the management of concurrent multicast sessions with security and QoS guarantees. Their main feature is a high degree of change in terms of membership, implying the necessity for fast reconfiguration and provisioning. We will approach the management problem using techniques developed in the context of virtual private networks, adapted to the high dynamicity that we are confronted with. We propose a framework for the management of such networks by integrating the management and the control plane, using the programmable and active networks paradigms developed within the research community. We apply the framework to the management of residential user TV multicast, where an ATM based access network supports the delivery of TV content to all clients having subscribed to a DVPN

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    Smart grids for rural conditions and e-mobility - Applying power routers, batteries and virtual power plants

    Get PDF
    Significant reductions of greenhouse gas emission by use of renewable energy sources belong to the common targets of the European Union. Smart grids address intelligent use and integration of conventional and renewable generation in combination with controllable loads and storages. Two special aspects have also to be considered for smart grids in future: rural conditions and electric vehicles. Both, the increasing share of renewable energy sources and a rising demand for charging power by electrical vehicles lead to new challenges of network stability (congestion, voltage deviation), especially in rural distribution grids. This paper describes two lighthouse projects in Europe (“Well2Wheel” and “Smart Rural Grid”) dealing with these topics. The link between these projects is the implementation of the same virtual power plant technology and the approach of cellular grid cells. Starting with an approach for the average energy balance in 15 minutes intervals in several grid cells in the first project, the second project even allows the islanded operation of such cells as a microgrid. The integration of renewable energy sources into distribution grids primary takes place in rural areas. The lighthouse project “Smart Rural Grid”, which is founded by the European Union, demonstrates possibilities to use the existing distribution system operator infrastructure more effectively by applying an optimised and scheduled operation of the assets and using intelligent distribution power routers, called IDPR. IDPR are active power electronic devices operating at low voltage in distribution grids aiming to reduce losses due to unbalanced loads and enabling active voltage and reactive power control. This allows a higher penetration of renewable energy sources in existing grids without investing in new lines and transformers. Integrated in a virtual power plant and combined with batteries, the IDPR also allows a temporary islanded mode of grid cells. Both projects show the potential of avoiding or postponing investments in new primary infrastructure like cables, transformers and lines by using a forward-looking operation which controls generators, loads and batteries (mobile and stationary) by using new grid assets like power routers. While primary driven by physical restrictions as voltage-band violations and energy balance, these cells also define and allow local smart markets. In consequence the distribution system operators could avoid direct control access by giving an incentive to the asset owners by local price signals according to the grid situation and forecasted congestions.Peer ReviewedPostprint (published version

    An integrated approach for analysing and assessing the performance of virtual learning groups

    Get PDF
    Collaborative distance learning involves a variety of elements and factors that have to be considered and measured in order to analyse and assess group and individual performance more effectively and objectively. This paper presents an approach that integrates qualitative, social network analysis (SNA) and quantitative techniques for evaluating online collaborative learning interactions. Integration of various different data sources, tools and techniques provides a more complete and robust framework for group modelling and guarantees a more efficient evaluation of group effectiveness and individual competence. Our research relies on the analysis of a real, long-term, complex collaborative experience, which is initially evaluated in terms of principled criteria and a basic qualitative process. At the end of the experience, the coded student interactions are further analysed through the SNA technique to assess participatory aspects, identify the most effective groups and the most prominent actors. Finally, the approach is contrasted and completed through a statistical technique which sheds more light on the results obtained that far. The proposal draws a well-founded line toward the development of a principled framework for the monitoring and analysis of group interaction and group scaffolding which can be considered a major issue towards the actual application of the CSCL proposals to real classrooms.Peer ReviewedPostprint (author's final draft

    Quantum Cryptography in Practice

    Get PDF
    BBN, Harvard, and Boston University are building the DARPA Quantum Network, the world's first network that delivers end-to-end network security via high-speed Quantum Key Distribution, and testing that Network against sophisticated eavesdropping attacks. The first network link has been up and steadily operational in our laboratory since December 2002. It provides a Virtual Private Network between private enclaves, with user traffic protected by a weak-coherent implementation of quantum cryptography. This prototype is suitable for deployment in metro-size areas via standard telecom (dark) fiber. In this paper, we introduce quantum cryptography, discuss its relation to modern secure networks, and describe its unusual physical layer, its specialized quantum cryptographic protocol suite (quite interesting in its own right), and our extensions to IPsec to integrate it with quantum cryptography.Comment: Preprint of SIGCOMM 2003 pape
    • …
    corecore