904 research outputs found

    An Upper Bound for the Capacity of Amplitude-Constrained Scalar AWGN Channel

    Get PDF
    This paper slightly improves the upper bound in Thangaraj et al. for the capacity of the amplitude-constrained scalar AWGN channel. This improvement makes the upper bound within 0.002 bits of the capacity for EbN0≤2.5\frac{E_b}{N_0}\leq 2.5 dB

    Information-Theoretic Analysis of an Energy Harvesting Communication System

    Full text link
    In energy harvesting communication systems, an exogenous recharge process supplies energy for the data transmission and arriving energy can be buffered in a battery before consumption. Transmission is interrupted if there is not sufficient energy. We address communication with such random energy arrivals in an information-theoretic setting. Based on the classical additive white Gaussian noise (AWGN) channel model, we study the coding problem with random energy arrivals at the transmitter. We show that the capacity of the AWGN channel with stochastic energy arrivals is equal to the capacity with an average power constraint equal to the average recharge rate. We provide two different capacity achieving schemes: {\it save-and-transmit} and {\it best-effort-transmit}. Next, we consider the case where energy arrivals have time-varying average in a larger time scale. We derive the optimal offline power allocation for maximum average throughput and provide an algorithm that finds the optimal power allocation.Comment: Published in IEEE PIMRC, September 201

    Peak-to-average power ratio of good codes for Gaussian channel

    Get PDF
    Consider a problem of forward error-correction for the additive white Gaussian noise (AWGN) channel. For finite blocklength codes the backoff from the channel capacity is inversely proportional to the square root of the blocklength. In this paper it is shown that codes achieving this tradeoff must necessarily have peak-to-average power ratio (PAPR) proportional to logarithm of the blocklength. This is extended to codes approaching capacity slower, and to PAPR measured at the output of an OFDM modulator. As a by-product the convergence of (Smith's) amplitude-constrained AWGN capacity to Shannon's classical formula is characterized in the regime of large amplitudes. This converse-type result builds upon recent contributions in the study of empirical output distributions of good channel codes

    Unified Capacity Limit of Non-coherent Wideband Fading Channels

    Full text link
    In non-coherent wideband fading channels where energy rather than spectrum is the limiting resource, peaky and non-peaky signaling schemes have long been considered species apart, as the first approaches asymptotically the capacity of a wideband AWGN channel with the same average SNR, whereas the second reaches a peak rate at some finite critical bandwidth and then falls to zero as bandwidth grows to infinity. In this paper it is shown that this distinction is in fact an artifact of the limited attention paid in the past to the product between the bandwidth and the fraction of time it is in use. This fundamental quantity, called bandwidth occupancy, measures average bandwidth usage over time. For all signaling schemes with the same bandwidth occupancy, achievable rates approach to the wideband AWGN capacity within the same gap as the bandwidth occupancy approaches its critical value, and decrease to zero as the occupancy goes to infinity. This unified analysis produces quantitative closed-form expressions for the ideal bandwidth occupancy, recovers the existing capacity results for (non-)peaky signaling schemes, and unveils a trade-off between the accuracy of approximating capacity with a generalized Taylor polynomial and the accuracy with which the optimal bandwidth occupancy can be bounded.Comment: Accepted for publication in IEEE Transactions on Wireless Communications. Copyright may be transferred without notic
    • …
    corecore