15 research outputs found

    Joint Laver diamonds and grounded forcing axioms

    Full text link
    I explore two separate topics: the concept of jointness for set-theoretic guessing principles, and the notion of grounded forcing axioms. A family of guessing sequences is said to be joint if all of its members can guess any given family of targets independently and simultaneously. I primarily investigate jointness in the case of various kinds of Laver diamonds. In the case of measurable cardinals I show that, while the assertions that there are joint families of Laver diamonds of a given length get strictly stronger with increasing length, they are all equiconsistent. This is contrasted with the case of partially strong cardinals, where we can derive additional consistency strength, and ordinary diamond sequences, where large joint families exist whenever even one diamond sequence does. Grounded forcing axioms modify the usual forcing axioms by restricting the posets considered to a suitable ground model. I focus on the grounded Martin's axiom which states that Martin's axioms holds for posets coming from some ccc ground model. I examine the new axiom's effects on the cardinal characteristics of the continuum and show that it is quite a bit more robust under mild forcing than Martin's axiom itself.Comment: This is my PhD dissertatio

    Joint Laver Diamonds and Grounded Forcing Axioms

    Full text link
    In chapter 1 a notion of independence for diamonds and Laver diamonds is investigated. A sequence of Laver diamonds for κ is joint if for any sequence of targets there is a single elementary embedding j with critical point κ such that each Laver diamond guesses its respective target via j. In the case of measurable cardinals (with similar results holding for (partially) supercompact cardinals) I show that a single Laver diamond for κ yields a joint sequence of length κ, and I give strict separation results for all larger lengths of joint sequences. Even though the principles get strictly stronger in terms of direct implication, I show that they are all equiconsistent. This is contrasted with the case of θ-strong cardinals where, for certain θ, the existence of even the shortest joint Laver sequences carries nontrivial consistency strength. I also formulate a notion of jointness for ordinary ◊κ-sequences on any regular cardinal κ. The main result concerning these shows that there is no separation according to length and a single ◊κ-sequence yields joint families of all possible lengths. In chapter 2 the notion of a grounded forcing axiom is introduced and explored in the case of Martin\u27s axiom. This grounded Martin\u27s axiom, a weakening of the usual axiom, states that the universe is a ccc forcing extension of some inner model and the restriction of Martin\u27s axiom to the posets coming from that ground model holds. I place the new axiom in the hierarchy of fragments of Martin\u27s axiom and examine its effects on the cardinal characteristics of the continuum. I also show that the grounded version is quite a bit more robust under mild forcing than Martin\u27s axiom itself
    corecore