4,115 research outputs found

    Millimeter Wave MIMO Channel Estimation Based on Adaptive Compressed Sensing

    Full text link
    Multiple-input multiple-output (MIMO) systems are well suited for millimeter-wave (mmWave) wireless communications where large antenna arrays can be integrated in small form factors due to tiny wavelengths, thereby providing high array gains while supporting spatial multiplexing, beamforming, or antenna diversity. It has been shown that mmWave channels exhibit sparsity due to the limited number of dominant propagation paths, thus compressed sensing techniques can be leveraged to conduct channel estimation at mmWave frequencies. This paper presents a novel approach of constructing beamforming dictionary matrices for sparse channel estimation using the continuous basis pursuit (CBP) concept, and proposes two novel low-complexity algorithms to exploit channel sparsity for adaptively estimating multipath channel parameters in mmWave channels. We verify the performance of the proposed CBP-based beamforming dictionary and the two algorithms using a simulator built upon a three-dimensional mmWave statistical spatial channel model, NYUSIM, that is based on real-world propagation measurements. Simulation results show that the CBP-based dictionary offers substantially higher estimation accuracy and greater spectral efficiency than the grid-based counterpart introduced by previous researchers, and the algorithms proposed here render better performance but require less computational effort compared with existing algorithms.Comment: 7 pages, 5 figures, in 2017 IEEE International Conference on Communications Workshop (ICCW), Paris, May 201

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN
    • …
    corecore