3 research outputs found

    An Optimized DBN-based Coronary Heart Disease Risk Prediction

    Get PDF
    Coronary Heart Disease (CHD) is the world’s leading cause of death according to a World Health Organization (WHO) report. Despite the evolution of modern medical technology, the mortality rate of CHD has increased. Nevertheless, patients often do not realize they have CHD until their condition is serious due to the complexity, high cost, and the side effects of the diagnosis process. Thus, research on predicting CHD risk has been conducted. The Framingham study is a widely-accepted study in this field. However, one of its limitations is its overestimation of risk, which threatens its accuracy. Therefore, this study suggests a more advanced CHD risk prediction algorithm based on Optimized-DBN (Deep Belief Network). Optimized- DBN is an algorithm to improve performance by overcoming the limitations of the existing DBN. DBN does not have the global optimum values for number of layers and nodes, which affects research results. We overcame this limitation by combining with a genetic algorithm. The result of genetic algorithm for deriving the number of layers and nodes of Optimized-DBN for CHD prediction was 2 layers, 5 and 7 nodes to each layers. The accuracy of the CHD prediction algorithm based on Optimized- DBN which is developed by applying results of genetic algorithm was 0.8924, which is better than Framingham’s 0.5015 and DBN’s 0.7507. In the case of specificity, Optimized-DBN based CHD prediction was 0.7440, which was slightly lower than 0.8208 of existing DBN, but better than Framingham’s 0.65. In the case of sensitivity, Optimized-DBN is 0.8549, which is better than Framingham 0.4429 and DBN 0.7468. AUC of suggesting algorithm was 0.762, which was much better than Framingham 0.547 and DBN 0.570

    Edge-Based Health Care Monitoring System: Ensemble of Classifier Based Model

    Get PDF
    Health Monitoring System (HMS) is an excellent tool that actually saves lives. It makes use of transmitters to gather information and transmits it wirelessly to a receiver. Essentially, it is much more practical than the large equipment that the majority of hospitals now employ and continuously checks a patient's health data 24/7. The primary goal of this research is to develop a three-layered Ensemble of Classifier model on Edge based Healthcare Monitoring System (ECEHMS) and Gauss Iterated Pelican Optimization Algorithm (GIPOA) including data collection layer, data analytics layer, and presentation layer. As per our ECEHMS-GIPOA, the healthcare dataset is collected from the UCI repository. The data analytics layer performs preprocessing, feature extraction, dimensionality reduction and classification. Data normalization will be done in preprocessing step. Statistical features (Min/Max, SD, Mean, Median), improved higher order statistical features (Skewness, Kurtosis, Entropy), and Technical indicator based features were extracted during Feature Extraction step. Improved Fuzzy C-means clustering (FCM) will be used for handling the Dimensionality reduction issue by clustering the appropriate feature set from the extracted features. Ensemble model is introduced to predict the disease stage that including the models like Deep Maxout Network (DMN), Improved Deep Belief Network (IDBN), and Recurrent Neural Network (RNN). Also, the enhancement in prediction/classification accuracy is assured via optimal training. For which, a GIPOA is introduced. Finally, ECEHMS-GIPOA performance is compared with other conventional approaches like ASO, BWO, SLO, SSO, FPA, and POA

    An Optimized DBN-based Coronary Heart Disease Risk Prediction

    No full text
    corecore