15,049 research outputs found

    A probabilistic evolutionary optimization approach to compute quasiparticle braids

    Full text link
    Topological quantum computing is an alternative framework for avoiding the quantum decoherence problem in quantum computation. The problem of executing a gate in this framework can be posed as the problem of braiding quasiparticles. Because these are not Abelian, the problem can be reduced to finding an optimal product of braid generators where the optimality is defined in terms of the gate approximation and the braid's length. In this paper we propose the use of different variants of estimation of distribution algorithms to deal with the problem. Furthermore, we investigate how the regularities of the braid optimization problem can be translated into statistical regularities by means of the Boltzmann distribution. We show that our best algorithm is able to produce many solutions that approximates the target gate with an accuracy in the order of 10610^{-6}, and have lengths up to 9 times shorter than those expected from braids of the same accuracy obtained with other methods.Comment: 9 pages,7 figures. Accepted at SEAL 201

    Quantum Algorithms, Architecture, and Error Correction

    Get PDF
    Quantum algorithms have the potential to provide exponential speedups over some of the best known classical algorithms. These speedups may enable quantum devices to solve currently intractable problems such as those in the fields of optimization, material science, chemistry, and biology. Thus, the realization of large-scale, reliable quantum-computers will likely have a significant impact on the world. For this reason, the focus of this dissertation is on the development of quantum-computing applications and robust, scalable quantum-architectures. I begin by presenting an overview of the language of quantum computation. I then, in joint work with Ojas Parekh, analyze the performance of the quantum approximate optimization algorithm (QAOA) on a graph problem called Max Cut. Next, I present a new stabilizer simulation algorithm that gives improved runtime performance for topological stabilizer codes. After that, in joint work with Andrew Landahl, I present a new set of procedures for performing logical operations called color-code lattice-surgery. Finally, I describe a software package I developed for studying, developing, and evaluating quantum error-correcting codes under realistic noise

    Optimized Surface Code Communication in Superconducting Quantum Computers

    Full text link
    Quantum computing (QC) is at the cusp of a revolution. Machines with 100 quantum bits (qubits) are anticipated to be operational by 2020 [googlemachine,gambetta2015building], and several-hundred-qubit machines are around the corner. Machines of this scale have the capacity to demonstrate quantum supremacy, the tipping point where QC is faster than the fastest classical alternative for a particular problem. Because error correction techniques will be central to QC and will be the most expensive component of quantum computation, choosing the lowest-overhead error correction scheme is critical to overall QC success. This paper evaluates two established quantum error correction codes---planar and double-defect surface codes---using a set of compilation, scheduling and network simulation tools. In considering scalable methods for optimizing both codes, we do so in the context of a full microarchitectural and compiler analysis. Contrary to previous predictions, we find that the simpler planar codes are sometimes more favorable for implementation on superconducting quantum computers, especially under conditions of high communication congestion.Comment: 14 pages, 9 figures, The 50th Annual IEEE/ACM International Symposium on Microarchitectur

    Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    Full text link
    Neural-Network Quantum States have been recently introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between Neural-Network Quantum States in the form of Restricted Boltzmann Machines and some classes of Tensor-Network states in arbitrary dimensions. In particular we demonstrate that short-range Restricted Boltzmann Machines are Entangled Plaquette States, while fully connected Restricted Boltzmann Machines are String-Bond States with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of Restricted Boltzmann Machines and their efficiency at representing many-body quantum states. String-Bond States also provide a generic way of enhancing the power of Neural-Network Quantum States and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of Tensor Networks and the efficiency of Neural-Network Quantum States into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional Tensor Networks, we show that Neural-Network Quantum States and their String-Bond States extension can describe a lattice Fractional Quantum Hall state exactly. In addition, we provide numerical evidence that Neural-Network Quantum States can approximate a chiral spin liquid with better accuracy than Entangled Plaquette States and local String-Bond States. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of String-Bond States as a tool in more traditional machine-learning applications.Comment: 15 pages, 7 figure
    corecore