10 research outputs found

    Sublinear algorithms for local graph centrality estimation

    Get PDF
    We study the complexity of local graph centrality estimation, with the goal of approximating the centrality score of a given target node while exploring only a sublinear number of nodes/arcs of the graph and performing a sublinear number of elementary operations. We develop a technique, that we apply to the PageRank and Heat Kernel centralities, for building a low-variance score estimator through a local exploration of the graph. We obtain an algorithm that, given any node in any graph of mm arcs, with probability (1δ)(1-\delta) computes a multiplicative (1±ϵ)(1\pm\epsilon)-approximation of its score by examining only O~(min(m2/3Δ1/3d2/3,m4/5d3/5))\tilde{O}(\min(m^{2/3} \Delta^{1/3} d^{-2/3},\, m^{4/5} d^{-3/5})) nodes/arcs, where Δ\Delta and dd are respectively the maximum and average outdegree of the graph (omitting for readability poly(ϵ1)\operatorname{poly}(\epsilon^{-1}) and polylog(δ1)\operatorname{polylog}(\delta^{-1}) factors). A similar bound holds for computational complexity. We also prove a lower bound of Ω(min(m1/2Δ1/2d1/2,m2/3d1/3))\Omega(\min(m^{1/2} \Delta^{1/2} d^{-1/2}, \, m^{2/3} d^{-1/3})) for both query complexity and computational complexity. Moreover, our technique yields a O~(n2/3)\tilde{O}(n^{2/3}) query complexity algorithm for the graph access model of [Brautbar et al., 2010], widely used in social network mining; we show this algorithm is optimal up to a sublogarithmic factor. These are the first algorithms yielding worst-case sublinear bounds for general directed graphs and any choice of the target node.Comment: 29 pages, 1 figur

    Local Hypergraph Clustering using Capacity Releasing Diffusion

    Full text link
    Local graph clustering is an important machine learning task that aims to find a well-connected cluster near a set of seed nodes. Recent results have revealed that incorporating higher order information significantly enhances the results of graph clustering techniques. The majority of existing research in this area focuses on spectral graph theory-based techniques. However, an alternative perspective on local graph clustering arises from using max-flow and min-cut on the objectives, which offer distinctly different guarantees. For instance, a new method called capacity releasing diffusion (CRD) was recently proposed and shown to preserve local structure around the seeds better than spectral methods. The method was also the first local clustering technique that is not subject to the quadratic Cheeger inequality by assuming a good cluster near the seed nodes. In this paper, we propose a local hypergraph clustering technique called hypergraph CRD (HG-CRD) by extending the CRD process to cluster based on higher order patterns, encoded as hyperedges of a hypergraph. Moreover, we theoretically show that HG-CRD gives results about a quantity called motif conductance, rather than a biased version used in previous experiments. Experimental results on synthetic datasets and real world graphs show that HG-CRD enhances the clustering quality.Comment: 18 pages, 6 figure

    An Optimization Approach to Locally-Biased Graph Algorithms

    No full text
    corecore