11 research outputs found

    IMLI: An Incremental Framework for MaxSAT-Based Learning of Interpretable Classification Rules

    Full text link
    The wide adoption of machine learning in the critical domains such as medical diagnosis, law, education had propelled the need for interpretable techniques due to the need for end users to understand the reasoning behind decisions due to learning systems. The computational intractability of interpretable learning led practitioners to design heuristic techniques, which fail to provide sound handles to tradeoff accuracy and interpretability. Motivated by the success of MaxSAT solvers over the past decade, recently MaxSAT-based approach, called MLIC, was proposed that seeks to reduce the problem of learning interpretable rules expressed in Conjunctive Normal Form (CNF) to a MaxSAT query. While MLIC was shown to achieve accuracy similar to that of other state of the art black-box classifiers while generating small interpretable CNF formulas, the runtime performance of MLIC is significantly lagging and renders approach unusable in practice. In this context, authors raised the question: Is it possible to achieve the best of both worlds, i.e., a sound framework for interpretable learning that can take advantage of MaxSAT solvers while scaling to real-world instances? In this paper, we take a step towards answering the above question in affirmation. We propose IMLI: an incremental approach to MaxSAT based framework that achieves scalable runtime performance via partition-based training methodology. Extensive experiments on benchmarks arising from UCI repository demonstrate that IMLI achieves up to three orders of magnitude runtime improvement without loss of accuracy and interpretability.Comment: 10 pages, published in the proceedings of AAAI/ACM Conference on AI, Ethics, and Society (AIES 2019

    Interpretable machine learning for genomics

    Get PDF
    High-throughput technologies such as next-generation sequencing allow biologists to observe cell function with unprecedented resolution, but the resulting datasets are too large and complicated for humans to understand without the aid of advanced statistical methods. Machine learning (ML) algorithms, which are designed to automatically find patterns in data, are well suited to this task. Yet these models are often so complex as to be opaque, leaving researchers with few clues about underlying mechanisms. Interpretable machine learning (iML) is a burgeoning subdiscipline of computational statistics devoted to making the predictions of ML models more intelligible to end users. This article is a gentle and critical introduction to iML, with an emphasis on genomic applications. I define relevant concepts, motivate leading methodologies, and provide a simple typology of existing approaches. I survey recent examples of iML in genomics, demonstrating how such techniques are increasingly integrated into research workflows. I argue that iML solutions are required to realize the promise of precision medicine. However, several open challenges remain. I examine the limitations of current state-of-the-art tools and propose a number of directions for future research. While the horizon for iML in genomics is wide and bright, continued progress requires close collaboration across disciplines

    Interpretability and Explainability: A Machine Learning Zoo Mini-tour

    Full text link
    In this review, we examine the problem of designing interpretable and explainable machine learning models. Interpretability and explainability lie at the core of many machine learning and statistical applications in medicine, economics, law, and natural sciences. Although interpretability and explainability have escaped a clear universal definition, many techniques motivated by these properties have been developed over the recent 30 years with the focus currently shifting towards deep learning methods. In this review, we emphasise the divide between interpretability and explainability and illustrate these two different research directions with concrete examples of the state-of-the-art. The review is intended for a general machine learning audience with interest in exploring the problems of interpretation and explanation beyond logistic regression or random forest variable importance. This work is not an exhaustive literature survey, but rather a primer focusing selectively on certain lines of research which the authors found interesting or informative

    Logic-Based Explainability in Machine Learning

    Full text link
    The last decade witnessed an ever-increasing stream of successes in Machine Learning (ML). These successes offer clear evidence that ML is bound to become pervasive in a wide range of practical uses, including many that directly affect humans. Unfortunately, the operation of the most successful ML models is incomprehensible for human decision makers. As a result, the use of ML models, especially in high-risk and safety-critical settings is not without concern. In recent years, there have been efforts on devising approaches for explaining ML models. Most of these efforts have focused on so-called model-agnostic approaches. However, all model-agnostic and related approaches offer no guarantees of rigor, hence being referred to as non-formal. For example, such non-formal explanations can be consistent with different predictions, which renders them useless in practice. This paper overviews the ongoing research efforts on computing rigorous model-based explanations of ML models; these being referred to as formal explanations. These efforts encompass a variety of topics, that include the actual definitions of explanations, the characterization of the complexity of computing explanations, the currently best logical encodings for reasoning about different ML models, and also how to make explanations interpretable for human decision makers, among others
    corecore