8 research outputs found

    An Optimal Application-Aware Resource Block Scheduling in LTE

    Full text link
    In this paper, we introduce an approach for application-aware resource block scheduling of elastic and inelastic adaptive real-time traffic in fourth generation Long Term Evolution (LTE) systems. The users are assigned to resource blocks. A transmission may use multiple resource blocks scheduled over frequency and time. In our model, we use logarithmic and sigmoidal-like utility functions to represent the users applications running on different user equipments (UE)s. We present an optimal problem with utility proportional fairness policy, where the fairness among users is in utility percentage (i.e user satisfaction with the service) of the corresponding applications. Our objective is to allocate the resources to the users with priority given to the adaptive real-time application users. In addition, a minimum resource allocation for users with elastic and inelastic traffic should be guaranteed. Every user subscribing for the mobile service should have a minimum quality-of-service (QoS) with a priority criterion. We prove that our scheduling policy exists and achieves the maximum. Therefore the optimal solution is tractable. We present a centralized scheduling algorithm to allocate evolved NodeB (eNodeB) resources optimally with a priority criterion. Finally, we present simulation results for the performance of our scheduling algorithm and compare our results with conventional proportional fairness approaches. The results show that the user satisfaction is higher with our proposed method.Comment: 5 page

    Position Estimation of Robotic Mobile Nodes in Wireless Testbed using GENI

    Full text link
    We present a low complexity experimental RF-based indoor localization system based on the collection and processing of WiFi RSSI signals and processing using a RSS-based multi-lateration algorithm to determine a robotic mobile node's location. We use a real indoor wireless testbed called w-iLab.t that is deployed in Zwijnaarde, Ghent, Belgium. One of the unique attributes of this testbed is that it provides tools and interfaces using Global Environment for Network Innovations (GENI) project to easily create reproducible wireless network experiments in a controlled environment. We provide a low complexity algorithm to estimate the location of the mobile robots in the indoor environment. In addition, we provide a comparison between some of our collected measurements with their corresponding location estimation and the actual robot location. The comparison shows an accuracy between 0.65 and 5 meters.Comment: (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Context-Aware Resource Allocation in Cellular Networks

    Full text link
    We define and propose a resource allocation architecture for cellular networks. The architecture combines content-aware, time-aware and location-aware resource allocation for next generation broadband wireless systems. The architecture ensures content-aware resource allocation by prioritizing real-time applications users over delay-tolerant applications users when allocating resources. It enables time-aware resource allocation via traffic-dependent pricing that varies during different hours of day (e.g. peak and off-peak traffic hours). Additionally, location-aware resource allocation is integrable in this architecture by including carrier aggregation of various frequency bands. The context-aware resource allocation is an optimal and flexible architecture that can be easily implemented in practical cellular networks. We highlight the advantages of the proposed network architecture with a discussion on the future research directions for context-aware resource allocation architecture. We also provide experimental results to illustrate a general proof of concept for this new architecture.Comment: (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Traffic-aware carrier allocation with aggregation for load balancing

    Get PDF
    We consider the resource allocation with aggregation of multiple bands including unlicensed band for heterogeneous traffic. While the mobile data traffic including high volume of video traffic is expected to increase significantly, an efficient management of radio resources from multiple bands is required to guarantee the quality of service (QoS) of different traffic types. In this context, we formulate an optimal resource allocation by using different utility functions for heterogeneous traffic and the two-step resource allocation algorithm including resource grouping has been proposed. Simulation results demonstrate that the proposed algorithm enhances the connection robustness and shows good performance in terms of higher utility value of inelastic traffic even at high traffic loads by steering elastic traffic to unlicensed band
    corecore