706 research outputs found

    A Literature Survey of Cooperative Caching in Content Distribution Networks

    Full text link
    Content distribution networks (CDNs) which serve to deliver web objects (e.g., documents, applications, music and video, etc.) have seen tremendous growth since its emergence. To minimize the retrieving delay experienced by a user with a request for a web object, caching strategies are often applied - contents are replicated at edges of the network which is closer to the user such that the network distance between the user and the object is reduced. In this literature survey, evolution of caching is studied. A recent research paper [15] in the field of large-scale caching for CDN was chosen to be the anchor paper which serves as a guide to the topic. Research studies after and relevant to the anchor paper are also analyzed to better evaluate the statements and results of the anchor paper and more importantly, to obtain an unbiased view of the large scale collaborate caching systems as a whole.Comment: 5 pages, 5 figure

    Efficient Traffic Management Algorithms for the Core Network using Device-to-Device Communication and Edge Caching

    Get PDF
    Exponentially growing number of communicating devices and the need for faster, more reliable and secure communication are becoming major challenges for current mobile communication architecture. More number of connected devices means more bandwidth and a need for higher Quality of Service (QoS) requirements, which bring new challenges in terms of resource and traffic management. Traffic offload to the edge has been introduced to tackle this demand-explosion that let the core network offload some of the contents to the edge to reduce the traffic congestion. Device-to-Device (D2D) communication and edge caching, has been proposed as promising solutions for offloading data. D2D communication refers to the communication infrastructure where the users in proximity communicate with each other directly. D2D communication improves overall spectral efficiency, however, it introduces additional interference in the system. To enable D2D communication, efficient resource allocation must be introduced in order to minimize the interference in the system and this benefits the system in terms of bandwidth efficiency. In the first part of this thesis, low complexity resource allocation algorithm using stable matching is proposed to optimally assign appropriate uplink resources to the devices in order to minimize interference among D2D and cellular users. Edge caching has recently been introduced as a modification of the caching scheme in the core network, which enables a cellular Base Station (BS) to keep copies of the contents in order to better serve users and enhance Quality of Experience (QoE). However, enabling BSs to cache data on the edge of the network brings new challenges especially on deciding on which and how the contents should be cached. Since users in the same cell may share similar content-needs, we can exploit this temporal-spatial correlation in the favor of caching system which is referred to local content popularity. Content popularity is the most important factor in the caching scheme which helps the BSs to cache appropriate data in order to serve the users more efficiently. In the edge caching scheme, the BS does not know the users request-pattern in advance. To overcome this bottleneck, a content popularity prediction using Markov Decision Process (MDP) is proposed in the second part of this thesis to let the BS know which data should be cached in each time-slot. By using the proposed scheme, core network access request can be significantly reduced and it works better than caching based on historical data in both stable and unstable content popularity

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure
    • …
    corecore