6,879 research outputs found

    EMEEDP: Enhanced Multi-hop Energy Efficient Distributed Protocol for Heterogeneous Wireless Sensor Network

    Full text link
    In WSN (Wireless Sensor Network) every sensor node sensed the data and transmit it to the CH (Cluster head) or BS (Base Station). Sensors are randomly deployed in unreachable areas, where battery replacement or battery charge is not possible. For this reason, Energy conservation is the important design goal while developing a routing and distributed protocol to increase the lifetime of WSN. In this paper, an enhanced energy efficient distributed protocol for heterogeneous WSN have been reported. EMEEDP is proposed for heterogeneous WSN to increase the lifetime of the network. An efficient algorithm is proposed in the form of flowchart and based on various clustering equation proved that the proposed work accomplishes longer lifetime with improved QOS parameters parallel to MEEP. A WSN implemented and tested using Raspberry Pi devices as a base station, temperature sensors as a node and xively.com as a cloud. Users use data for decision purpose or business purposes from xively.com using internet.Comment: 6 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1409.1412 by other author

    Effects of Spatial Randomness on Locating a Point Source with Distributed Sensors

    Full text link
    Most studies that consider the problem of estimating the location of a point source in wireless sensor networks assume that the source location is estimated by a set of spatially distributed sensors, whose locations are fixed. Motivated by the fact that the observation quality and performance of the localization algorithm depend on the location of the sensors, which could be randomly distributed, this paper investigates the performance of a recently proposed energy-based source-localization algorithm under the assumption that the sensors are positioned according to a uniform clustering process. Practical considerations such as the existence and size of the exclusion zones around each sensor and the source will be studied. By introducing a novel performance measure called the estimation outage, it will be shown how parameters related to the network geometry such as the distance between the source and the closest sensor to it as well as the number of sensors within a region surrounding the source affect the localization performance.Comment: 7 Pages, 5 Figures, To appear at the 2014 IEEE International Conference on Communications (ICC'14) Workshop on Advances in Network Localization and Navigation (ANLN), Invited Pape

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc

    Combined Coverage Area Reporting and Geographical Routing in Wireless Sensor-Actuator Networks for Cooperating with Unmanned Aerial Vehicles

    Get PDF
    In wireless sensor network (WSN) applications with multiple gateways, it is key to route location dependent subscriptions efficiently at two levels in the system. At the gateway level, data sinks must not waste the energy of the WSN by injecting subscriptions that are not relevant for the nodes in their coverage area and at WSN level, energy-efficient delivery of subscriptions to target areas is required. In this paper, we propose a mechanism in which (1) the WSN provides an accurate and up-to-date coverage area description to gateways and (2) the wireless sensor network re-uses the collected coverage area information to enable efficient geographical routing of location dependent subscriptions and other messages. The latter has a focus on routing of messages injected from sink nodes to nodes in the region of interest. Our proposed mechanisms are evaluated in simulation

    Energy Efficiency in Two-Tiered Wireless Sensor Networks

    Full text link
    We study a two-tiered wireless sensor network (WSN) consisting of NN access points (APs) and MM base stations (BSs). The sensing data, which is distributed on the sensing field according to a density function ff, is first transmitted to the APs and then forwarded to the BSs. Our goal is to find an optimal deployment of APs and BSs to minimize the average weighted total, or Lagrangian, of sensor and AP powers. For M=1M=1, we show that the optimal deployment of APs is simply a linear transformation of the optimal NN-level quantizer for density ff, and the sole BS should be located at the geometric centroid of the sensing field. Also, for a one-dimensional network and uniform ff, we determine the optimal deployment of APs and BSs for any NN and MM. Moreover, to numerically optimize node deployment for general scenarios, we propose one- and two-tiered Lloyd algorithms and analyze their convergence properties. Simulation results show that, when compared to random deployment, our algorithms can save up to 79\% of the power on average.Comment: 11 pages, 7 figure

    An Energy Driven Architecture for Wireless Sensor Networks

    Full text link
    Most wireless sensor networks operate with very limited energy sources-their batteries, and hence their usefulness in real life applications is severely constrained. The challenging issues are how to optimize the use of their energy or to harvest their own energy in order to lengthen their lives for wider classes of application. Tackling these important issues requires a robust architecture that takes into account the energy consumption level of functional constituents and their interdependency. Without such architecture, it would be difficult to formulate and optimize the overall energy consumption of a wireless sensor network. Unlike most current researches that focus on a single energy constituent of WSNs independent from and regardless of other constituents, this paper presents an Energy Driven Architecture (EDA) as a new architecture and indicates a novel approach for minimising the total energy consumption of a WS
    • …
    corecore