25,470 research outputs found

    Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

    Full text link
    This paper provides a tutorial and survey for a specific kind of illustrative visualization technique: feature lines. We examine different feature line methods. For this, we provide the differential geometry behind these concepts and adapt this mathematical field to the discrete differential geometry. All discrete differential geometry terms are explained for triangulated surface meshes. These utilities serve as basis for the feature line methods. We provide the reader with all knowledge to re-implement every feature line method. Furthermore, we summarize the methods and suggest a guideline for which kind of surface which feature line algorithm is best suited. Our work is motivated by, but not restricted to, medical and biological surface models.Comment: 33 page

    Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds

    Full text link
    We develop exterior calculus approaches for partial differential equations on radial manifolds. We introduce numerical methods that approximate with spectral accuracy the exterior derivative d\mathbf{d}, Hodge star ⋆\star, and their compositions. To achieve discretizations with high precision and symmetry, we develop hyperinterpolation methods based on spherical harmonics and Lebedev quadrature. We perform convergence studies of our numerical exterior derivative operator d‾\overline{\mathbf{d}} and Hodge star operator ⋆‾\overline{\star} showing each converge spectrally to d\mathbf{d} and ⋆\star. We show how the numerical operators can be naturally composed to formulate general numerical approximations for solving differential equations on manifolds. We present results for the Laplace-Beltrami equations demonstrating our approach.Comment: 22 pages, 13 figure

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Geodesic Distance Function Learning via Heat Flow on Vector Fields

    Full text link
    Learning a distance function or metric on a given data manifold is of great importance in machine learning and pattern recognition. Many of the previous works first embed the manifold to Euclidean space and then learn the distance function. However, such a scheme might not faithfully preserve the distance function if the original manifold is not Euclidean. Note that the distance function on a manifold can always be well-defined. In this paper, we propose to learn the distance function directly on the manifold without embedding. We first provide a theoretical characterization of the distance function by its gradient field. Based on our theoretical analysis, we propose to first learn the gradient field of the distance function and then learn the distance function itself. Specifically, we set the gradient field of a local distance function as an initial vector field. Then we transport it to the whole manifold via heat flow on vector fields. Finally, the geodesic distance function can be obtained by requiring its gradient field to be close to the normalized vector field. Experimental results on both synthetic and real data demonstrate the effectiveness of our proposed algorithm

    Subdivision Directional Fields

    Full text link
    We present a novel linear subdivision scheme for face-based tangent directional fields on triangle meshes. Our subdivision scheme is based on a novel coordinate-free representation of directional fields as halfedge-based scalar quantities, bridging the finite-element representation with discrete exterior calculus. By commuting with differential operators, our subdivision is structure-preserving: it reproduces curl-free fields precisely, and reproduces divergence-free fields in the weak sense. Moreover, our subdivision scheme directly extends to directional fields with several vectors per face by working on the branched covering space. Finally, we demonstrate how our scheme can be applied to directional-field design, advection, and robust earth mover's distance computation, for efficient and robust computation

    Semiparametric Inference and Lower Bounds for Real Elliptically Symmetric Distributions

    Full text link
    This paper has a twofold goal. The first aim is to provide a deeper understanding of the family of the Real Elliptically Symmetric (RES) distributions by investigating their intrinsic semiparametric nature. The second aim is to derive a semiparametric lower bound for the estimation of the parametric component of the model. The RES distributions represent a semiparametric model where the parametric part is given by the mean vector and by the scatter matrix while the non-parametric, infinite-dimensional, part is represented by the density generator. Since, in practical applications, we are often interested only in the estimation of the parametric component, the density generator can be considered as nuisance. The first part of the paper is dedicated to conveniently place the RES distributions in the framework of the semiparametric group models. The second part of the paper, building on the mathematical tools previously introduced, the Constrained Semiparametric Cram\'{e}r-Rao Bound (CSCRB) for the estimation of the mean vector and of the constrained scatter matrix of a RES distributed random vector is introduced. The CSCRB provides a lower bound on the Mean Squared Error (MSE) of any robust MM-estimator of mean vector and scatter matrix when no a-priori information on the density generator is available. A closed form expression for the CSCRB is derived. Finally, in simulations, we assess the statistical efficiency of the Tyler's and Huber's scatter matrix MM-estimators with respect to the CSCRB.Comment: This paper has been accepted for publication in IEEE Transactions on Signal Processin
    • …
    corecore