612 research outputs found

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    A TASK-ORIENTED DISASTER INFORMATION CORRELATION METHOD

    Get PDF

    Managing big, linked, and open earth-observation data: Using the TELEIOS/LEO software stack

    Get PDF
    Big Earth-observation (EO) data that are made freely available by space agencies come from various archives. Therefore, users trying to develop an application need to search within these archives, discover the needed data, and integrate them into their application. In this article, we argue that if EO data are published using the linked data paradigm, then the data discovery, data integration, and development of applications becomes easier. We present the life cycle of big, linked, and open EO data and show how to support their various stages using the software stack developed by the European Union (EU) research projects TELEIOS and the Linked Open EO Data for Precision Farming (LEO). We also show how this stack of tools can be used to implement an operational wildfire-monitoring service

    Operational Wildfire Monitoring and Disaster Management Support Using State-of-the-art EO and Information Technologies

    Get PDF
    Fires have been one of the main driving forces in the evolution of plants and ecosystems, determining the current structure and composition of the Landscapes. However, significant alterations in the fire regime have occurred in the recent decades, primarily as a result of socioeconomic changes, increasing dramatically the catastrophic impacts of wildfires as it is reflected in the increase during the 20th century of both, number of fires and the annual area burnt. Therefore, the establishment of a permanent robust fire monitoring system is of paramount importance to implement an effective environmental management policy. Such an integrated system has been developed in the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA). Volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters in the framework of the operational GMES projects SAFER and LinkER addressing fire emergency response and emergency support needs for the entire European Union. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA’s in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integra

    A TASK-DRIVEN DISASTER DATA LINK APPROACH

    Get PDF

    Geographic ontology for major disasters: methodology and implementation

    Get PDF
    During a catastrophic event, the International Charter1 "Space and Major Disasters" is regularly activated and provides the rescue teams damage maps prepared by a photo-interpreter team basing on pre and post-disaster satellite images. A satellite image manual processing must be accomplished in most cases to build these maps, a complex and demanding process. Given the importance of time in such critical situations, automatic or semiautomatic tools are highly recommended. Despite the quick treatment presented by automatic processing, it usually presents a semantic gap issue. Our aim is to express expert knowledge using a well-defined knowledge representation method: ontologies and make semantics explicit in geographic and remote sensing applications by taking the ontology advantages in knowledge representation, expression, and knowledge discovery. This research focuses on the design and implementation of a comprehensive geographic ontology in the case of major disasters, that we named GEO-MD, and illustrates its application in the case of Haiti 2010 earthquake. Results show how the ontology integration reduces the semantic gap and improves the automatic classification accuracy

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Tsunami-Related Data: A Review of Available Repositories Used in Scientific Literature

    Get PDF
    Various organizations and institutions store large volumes of tsunami-related data, whose availability and quality should benefit society, as it improves decision making before the tsunami occurrence, during the tsunami impact, and when coping with the aftermath. However, the existing digital ecosystem surrounding tsunami research prevents us from extracting the maximum benefit from our research investments. The main objective of this study is to explore the field of data repositories providing secondary data associated with tsunami research and analyze the current situation. We analyze the mutual interconnections of references in scientific studies published in the Web of Science database, governmental bodies, commercial organizations, and research agencies. A set of criteria was used to evaluate content and searchability. We identified 60 data repositories with records used in tsunami research. The heterogeneity of data formats, deactivated or nonfunctional web pages, the generality of data repositories, or poor dataset arrangement represent the most significant weak points. We outline the potential contribution of ontology engineering as an example of computer science methods that enable improvements in tsunami-related data management
    • …
    corecore