2 research outputs found

    Combining a Probabilistic Sampling Technique and Simple Heuristics to solve the Dynamic Path Planning Problem

    Full text link
    Probabilistic sampling methods have become very popular to solve single-shot path planning problems. Rapidly-exploring Random Trees (RRTs) in particular have been shown to be very efficient in solving high dimensional problems. Even though several RRT variants have been proposed to tackle the dynamic replanning problem, these methods only perform well in environments with infrequent changes. This paper addresses the dynamic path planning problem by combining simple techniques in a multi-stage probabilistic algorithm. This algorithm uses RRTs as an initial solution, informed local search to fix unfeasible paths and a simple greedy optimizer. The algorithm is capable of recognizing when the local search is stuck, and subsequently restart the RRT. We show that this combination of simple techniques provides better responses to a highly dynamic environment than the dynamic RRT variants.Comment: 8 pages, 7 figures. Presented at the XXVIII International Conference of the Chilean Computer Society 200

    Single-Agent On-line Path Planning in Continuous, Unpredictable and Highly Dynamic Environments

    Full text link
    This document is a thesis on the subject of single-agent on-line path planning in continuous,unpredictable and highly dynamic environments. The problem is finding and traversing a collision-free path for a holonomic robot, without kinodynamic restrictions, moving in an environment with several unpredictably moving obstacles or adversaries. The availability of perfect information of the environment at all times is assumed. Several static and dynamic variants of the Rapidly Exploring Random Trees (RRT) algorithm are explored, as well as an evolutionary algorithm for planning in dynamic environments called the Evolutionary Planner/Navigator. A combination of both kinds of algorithms is proposed to overcome shortcomings in both, and then a combination of a RRT variant for initial planning and informed local search for navigation, plus a simple greedy heuristic for optimization. We show that this combination of simple techniques provides better responses to highly dynamic environments than the RRT extensions.Comment: 54 pages, Master of Science in Informatics Engineering thesi
    corecore