91 research outputs found

    Grid Information Technology as a New Technological Tool for e-Science, Healthcare and Life Science

    Get PDF
    Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science.Hoy en día, los proyectos científicos requieren poderosos recursos de computación capaces de manejar grandes cantidades de datos, los cuales han dado paso a la ciencia electrónica (e-ciencia). Estos requerimientos se hacen evidentes en la necesidad de optimizar tiempo y esfuerzos en actividades relacionadas con la salud. Cuando la e-ciencia se enfoca en el manejo colaborativo de toda la información generada en la medicina clínica y la salud, da como resultado la salud electrónica (e-salud). Los científicos se han interesado cada vez más y más en una tecnología emergente, como lo es la Tecnología de información en red, la que puede ofrecer solución a sus necesidades cotidianas. El siguiente trabajo apunta a examinar como la e-ciencia es empleada en el mundo. También se discute que la tecnología puede proveer una solución ideal para encarar nuevos desafíos en e-salud y Ciencias de la Vida.Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science

    Accounting Facilities in the European Supercomputing Grid DEISA

    Get PDF
    Account management and resource usage monitoring are essential services for production Grids. The scope of a production Grid infrastructure, the heterogeneity of resources and services, the typical community usage profiles, and the depth of integration of the resource providers regarding operational procedures and policies imply specific requirements for accounting facilities. We present the accounting facilities currently used in production in the Distributed European Infra-structure for the Supercomputing Applications (DEISA). DEISA is a consortium of leading national supercomputing centres currently deploying and operating a persistent, production quality, distributed su-percomputing environment with continental scope. The DEISA accounting facilities gather information from the site-local batch systems and the distributed DEISA user administration system, and generate XML usage records conforming to the OGF usage record specification which are then stored locally in a XML data base at each DEISA site. The distributed accounting information can be fetched by clients such as users, project supervisors, site accounting managers and DEISA supervisors. The information is made available by site-local WSRF-compliant accounting information services that allow for a fine-grained setting of access rights. Each authorized client gets a specific view on the accounting information according to one of the following roles: a) a site accounting manager imports usage records of related home-site users from all DEISA sites for longterm archiving, b) a project supervisor retrieves information to assess the resource usage by his project partners, c) a DEISA supervisor (e.g. someone overlooking the usage on behalf of the DEISA executive committee) gets a report on the global usage of DEISA resources, and d) the user who can retrieve all the accounting information related to his own jobs. The privacy and integrity of the data provided and transferred from the accounting information service running at each site is guaranteed using X.509 certificates for mutual authentication and secure communication channels

    Scientific data mining, integration, and visualization

    Get PDF
    This report summarises the workshop on Scientific Data Mining, Integration and Visualization (SDMIV) held at the e-Science Institute, Edinburgh (eSI[1] ) on 24-25 October 2002, and presents a set of recommendations arising from the discussion that took place there. The aims of the workshop were threefold: (A) To inform researchers in the SDMIV communities of the infrastructural advances being made by computing initiatives, such as the Grid; (B) To feed back requirements from the SDMIV areas to those developing the computational infrastructure; and (C) To foster interaction among all these communities, since the coordinated efforts of all of them will be required to realise the potential for scientific knowledge extraction offered by e-science initiatives worldwide

    Address databases for national SDI : comparing the novel data grid approach to data harvesting and federated databases

    Get PDF
    The original purpose of addresses was to enable the correct and unambiguous delivery of postal mail. The advent of computers and more specifically geographic information systems (GIS) opened up a whole new range of possibilities for the use of addresses, such as routing and vehicle navigation, spatial demographic analysis, geo-marketing, and service placement and delivery. Such functionality requires a database which can store and access spatial data effectively. In this paper we present address databases and justify the need for national address databases. We describe models used for national address databases, and present our evaluation framework for an address database at a national level within the context of a spatial data infrastructure (SDI). The models of data harvesting, federated databases and data grids are analyzed and evaluated according to our novel framework, and we show that the data grid model has some unique features that make it attractive for a national address database in an environment where centralized control and/or coordination is difficult or undesirable.http://www.tandfonline.com/loi/tgis2

    Revista Economica

    Get PDF
    corecore