644 research outputs found

    Interior-point algorithms for convex optimization based on primal-dual metrics

    Full text link
    We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms we analyse are so-called short-step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to any self-concordant barrier for any convex cone. We also prove that certain specializations of our algorithms to hyperbolic cone programming problems (which lie strictly between symmetric cone programming and general convex optimization problems in terms of generality) can take advantage of the favourable special structure of hyperbolic barriers. We make new connections to Riemannian geometry, integrals over operator spaces, Gaussian quadrature, and strengthen the connection of our algorithms to quasi-Newton updates and hence first-order methods in general.Comment: 36 page

    Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

    Full text link
    The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization

    A geodesic interior-point method for linear optimization over symmetric cones

    Full text link
    We develop a new interior-point method for symmetric-cone optimization, a common generalization of linear, second-order-cone, and semidefinite programming. Our key idea is updating iterates with a geodesic of the cone instead of the kernel of the linear constraints. This approach yields a primal-dual-symmetric, scale-invariant, and line-search-free algorithm that uses just half the variables of a standard primal-dual method. With elementary arguments, we establish polynomial-time convergence matching the standard square-root-n bound. Finally, we prove global convergence of a long-step variant and compare the approaches computationally. For linear programming, our algorithms reduce to central-path tracking in the log domain

    Primal-dual interior-point algorithms for linear programs with many inequality constraints

    Get PDF
    Linear programs (LPs) are one of the most basic and important classes of constrained optimization problems, involving the optimization of linear objective functions over sets defined by linear equality and inequality constraints. LPs have applications to a broad range of problems in engineering and operations research, and often arise as subproblems for algorithms that solve more complex optimization problems. ``Unbalanced'' inequality-constrained LPs with many more inequality constraints than variables are an important subclass of LPs. Under a basic non-degeneracy assumption, only a small number of the constraints can be active at the solution--it is only this active set that is critical to the problem description. On the other hand, the additional constraints make the problem harder to solve. While modern ``interior-point'' algorithms have become recognized as some of the best methods for solving large-scale LPs, they may not be recommended for unbalanced problems, because their per-iteration work does not scale well with the number of constraints. In this dissertation, we investigate "constraint-reduced'' interior-point algorithms designed to efficiently solve unbalanced LPs. At each iteration, these methods construct search directions based only on a small working set of constraints, while ignoring the rest. In this way, they significantly reduce their per-iteration work and, hopefully, their overall running time. In particular, we focus on constraint-reduction methods for the highly efficient primal-dual interior-point (PDIP) algorithms. We propose and analyze a convergent constraint-reduced variant of Mehrotra's predictor-corrector PDIP algorithm, the algorithm implemented in virtually every interior-point software package for linear (and convex-conic) programming. We prove global and local quadratic convergence of this algorithm under a very general class of constraint selection rules and under minimal assumptions. We also propose and analyze two regularized constraint-reduced PDIP algorithms (with similar convergence properties) designed to deal directly with a type of degeneracy that constraint-reduced interior-point algorithms are often subject to. Prior schemes for dealing with this degeneracy could end up negating the benefit of constraint-reduction. Finally, we investigate the performance of our algorithms by applying them to several test and application problems, and show that our algorithms often outperform alternative approaches

    Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

    Full text link
    This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This version has updated reference

    Frank-Wolfe Algorithms for Saddle Point Problems

    Full text link
    We extend the Frank-Wolfe (FW) optimization algorithm to solve constrained smooth convex-concave saddle point (SP) problems. Remarkably, the method only requires access to linear minimization oracles. Leveraging recent advances in FW optimization, we provide the first proof of convergence of a FW-type saddle point solver over polytopes, thereby partially answering a 30 year-old conjecture. We also survey other convergence results and highlight gaps in the theoretical underpinnings of FW-style algorithms. Motivating applications without known efficient alternatives are explored through structured prediction with combinatorial penalties as well as games over matching polytopes involving an exponential number of constraints.Comment: Appears in: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017). 39 page
    corecore