42 research outputs found

    An O(N squared) method for computing the eigensystem of N by N symmetric tridiagonal matrices by the divide and conquer approach

    Get PDF
    An efficient method is proposed to solve the eigenproblem of N by N Symmetric Tridiagonal (ST) matrices. Unlike the standard eigensolvers which necessitate O(N cubed) operations to compute the eigenvectors of such ST matrices, the proposed method computes both the eigenvalues and eigenvectors with only O(N squared) operations. The method is based on serial implementation of the recently introduced Divide and Conquer (DC) algorithm. It exploits the fact that by O(N squared) of DC operations, one can compute the eigenvalues of N by N ST matrix and a finite number of pairs of successive rows of its eigenvector matrix. The rest of the eigenvectors--all of them or one at a time--are computed by linear three-term recurrence relations. Numerical examples are presented which demonstrate the superiority of the proposed method by saving an order of magnitude in execution time at the expense of sacrificing a few orders of accuracy

    Studies in Rheology: Molecular Simulation and Theory

    Get PDF
    With an enormous advance in the capability of computers during the last fewdecades, the computer simulation has become an important tool for scientific researches in many areas such as physics, chemistry, biology, and so on. In particular, moleculardynamics (MD) simulations have been proven to be of a great help in understanding the rheology of complex fluids from the fundamental microscopic viewpoint. There are two important standard flows in rheology: shear flow and elongational flow. While there exist suitable nonequilibrium MD (NEMD) algorithms of shear flows, such as the Lees-Edwards purely boundary-driven algorithm and the so-called SLLOD algorithm as a field-driven algorithm, a proper NEMD algorithm for elongational flow has been lacking. The main difficulty of simulating elongational flow lies in the limited simulation time available due to the contraction of one or two dimensions dictated by itskinematics. This problem, however, has been partially resolved by Kraynik and Reinelt’s ingenious discovery of the temporal and spatial periodicity of lattice vectors in planar elongational flow (PEF). Although there have been a few NEMD simulations of PEF using their idea, another serious defect has recently been reported when using the SLLOD algorithm in PEF: for adiabatic systems, the total linear momentum of the system in the contracting direction grows exponentially with time, which eventually leads to an aphysical phase transition.This problem has been completely resolved by using the so-called ‘proper-SLLOD’ or ‘p-SLLOD’ algorithm, whose development has been one of the mainaccomplishments of this study. The fundamental correctness of the p-SLLOD algorithm has been demonstrated quite thoroughly in this work through detailed theoretical analyses together with direct simulation results. Both theoretical and simulation works achieved in this research are expected to play a significant role in advancing the knowledge of rheology, as well as that of NEMD simulation itself for other types of flow in general. Another important achievement in this work is the demonstration of the possibility of predicting a liquid structure in nonequilibrium states by employing a concept of ‘hypothetical’ nonequilibrium potentials. The methodology developed in this work has been shown to have good potential for further developments in this field

    Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays

    Get PDF
    A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. Inspired by recent work towards a low complexity divide-and-conquer PEVD algorithm, this paper analyses the performance of this algorithm - named divide-and-conquer sequential matrix diagonalisation (DC-SMD) - for applications involving broadband sensor arrays of various dimensionalities. We demonstrate that by using the DC-SMD algorithm instead of a traditional alternative, PEVD complexity and execution time can be significantly reduced. This reduction is shown to be especially impactful for broadband multichannel problems involving large arrays

    Towards Ad-Hoc GPU Acceleration Of Parallel Eigensystem Computations

    Full text link
    This paper explores the early implementation of high- performance routines for the solution of multiple large Hermitian eigenvector and eigenvalue systems on a Graphics Processing Unit (GPU). We report a perfor- mance increase of up to two orders of magnitude over the original EISPACK routines with a NVIDIA Tesla C2050 GPU, potentially allowing an order of magnitude in- crease in the complexity or resolution of a neutron scat- tering modeling application

    Restructuring the Tridiagonal and Bidiagonal QR Algorithms for Performance

    Get PDF
    We show how both the tridiagonal and bidiagonal QR algorithms can be restructured so that they be- come rich in operations that can achieve near-peak performance on a modern processor. The key is a novel, cache-friendly algorithm for applying multiple sets of Givens rotations to the eigenvector/singular vector matrix. This algorithm is then implemented with optimizations that (1) leverage vector instruction units to increase floating-point throughput, and (2) fuse multiple rotations to decrease the total number of memory operations. We demonstrate the merits of these new QR algorithms for computing the Hermitian eigenvalue decomposition (EVD) and singular value decomposition (SVD) of dense matrices when all eigen- vectors/singular vectors are computed. The approach yields vastly improved performance relative to the traditional QR algorithms for these problems and is competitive with two commonly used alternatives— Cuppen’s Divide and Conquer algorithm and the Method of Multiple Relatively Robust Representations— while inheriting the more modest O(n) workspace requirements of the original QR algorithms. Since the computations performed by the restructured algorithms remain essentially identical to those performed by the original methods, robust numerical properties are preserved

    Structured Eigenvalue Problems

    Get PDF
    Most eigenvalue problems arising in practice are known to be structured. Structure is often introduced by discretization and linearization techniques but may also be a consequence of properties induced by the original problem. Preserving this structure can help preserve physically relevant symmetries in the eigenvalues of the matrix and may improve the accuracy and efficiency of an eigenvalue computation. The purpose of this brief survey is to highlight these facts for some common matrix structures. This includes a treatment of rather general concepts such as structured condition numbers and backward errors as well as an overview of algorithms and applications for several matrix classes including symmetric, skew-symmetric, persymmetric, block cyclic, Hamiltonian, symplectic and orthogonal matrices

    MRRR-based Eigensolvers for Multi-core Processors and Supercomputers

    Get PDF
    The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations; it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based on a reduction to tridiagonal form. For its solution, the algorithm of Multiple Relatively Robust Representations (MRRR or MR3 in short) - introduced in the late 1990s - is among the fastest methods. To compute k eigenpairs of a real n-by-n tridiagonal T, MRRR only requires O(kn) arithmetic operations; in contrast, all the other practical methods require O(k^2 n) or O(n^3) operations in the worst case. This thesis centers around the performance and accuracy of MRRR.Comment: PhD thesi

    Mixed-Precision Numerical Linear Algebra Algorithms: Integer Arithmetic Based LU Factorization and Iterative Refinement for Hermitian Eigenvalue Problem

    Get PDF
    Mixed-precision algorithms are a class of algorithms that uses low precision in part of the algorithm in order to save time and energy with less accurate computation and communication. These algorithms usually utilize iterative refinement processes to improve the approximate solution obtained from low precision to the accuracy we desire from doing all the computation in high precision. Due to the demand of deep learning applications, there are hardware developments offering different low-precision formats including half precision (FP16), Bfloat16 and integer operations for quantized integers, which uses integers with a shared scalar to represent a set of equally spaced numbers. As new hardware architectures focus on bringing performance in these formats, the mixed-precision algorithms have more potential leverage on them and outmatch traditional fixed-precision algorithms. This dissertation consists of two articles. In the first article, we adapt one of the most fundamental algorithms in numerical linear algebra---LU factorization with partial pivoting--- to use integer arithmetic. With the goal of obtaining a low accuracy factorization as the preconditioner of generalized minimal residual (GMRES) to solve systems of linear equations, the LU factorization is adapted to use two different fixed-point formats for matrices L and U. A left-looking variant is also proposed for matrices with unbounded column growth. Finally, GMRES iterative refinement has shown that it can work on matrices with condition numbers up to 10000 with the algorithm that uses int16 as input and int32 accumulator for the update step. The second article targets symmetric and Hermitian eigenvalue problems. In this section we revisit the SICE algorithm from Dongarra et al. By applying the Sherman-Morrison formula on the diagonally-shifted tridiagonal systems, we propose an updated SICE-SM algorithm. By incorporating the latest two-stage algorithms from the PLASMA and MAGMA software libraries for numerical linear algebra, we achieved up to 3.6x speedup using the mixed-precision eigensolver with the blocked SICE-SM algorithm for iterative refinement when compared with full double complex precision solvers for the cases with a portion of eigenvalues and eigenvectors requested

    An Optimized and Scalable Eigensolver for Sequences of Eigenvalue Problems

    Get PDF
    In many scientific applications the solution of non-linear differential equations are obtained through the set-up and solution of a number of successive eigenproblems. These eigenproblems can be regarded as a sequence whenever the solution of one problem fosters the initialization of the next. In addition, in some eigenproblem sequences there is a connection between the solutions of adjacent eigenproblems. Whenever it is possible to unravel the existence of such a connection, the eigenproblem sequence is said to be correlated. When facing with a sequence of correlated eigenproblems the current strategy amounts to solving each eigenproblem in isolation. We propose a alternative approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials (ChFSI). The resulting eigensolver is optimized by minimizing the number of matrix-vector multiplications and parallelized using the Elemental library framework. Numerical results show that ChFSI achieves excellent scalability and is competitive with current dense linear algebra parallel eigensolvers.Comment: 23 Pages, 6 figures. First revision of an invited submission to special issue of Concurrency and Computation: Practice and Experienc
    corecore