238 research outputs found

    Power Allocation in MIMO Wiretap Channel with Statistical CSI and Finite-Alphabet Input

    Full text link
    In this paper, we consider the problem of power allocation in MIMO wiretap channel for secrecy in the presence of multiple eavesdroppers. Perfect knowledge of the destination channel state information (CSI) and only the statistical knowledge of the eavesdroppers CSI are assumed. We first consider the MIMO wiretap channel with Gaussian input. Using Jensen's inequality, we transform the secrecy rate max-min optimization problem to a single maximization problem. We use generalized singular value decomposition and transform the problem to a concave maximization problem which maximizes the sum secrecy rate of scalar wiretap channels subject to linear constraints on the transmit covariance matrix. We then consider the MIMO wiretap channel with finite-alphabet input. We show that the transmit covariance matrix obtained for the case of Gaussian input, when used in the MIMO wiretap channel with finite-alphabet input, can lead to zero secrecy rate at high transmit powers. We then propose a power allocation scheme with an additional power constraint which alleviates this secrecy rate loss problem, and gives non-zero secrecy rates at high transmit powers

    Secure Transmission with Multiple Antennas II: The MIMOME Wiretap Channel

    Full text link
    The capacity of the Gaussian wiretap channel model is analyzed when there are multiple antennas at the sender, intended receiver and eavesdropper. The associated channel matrices are fixed and known to all the terminals. A computable characterization of the secrecy capacity is established as the saddle point solution to a minimax problem. The converse is based on a Sato-type argument used in other broadcast settings, and the coding theorem is based on Gaussian wiretap codebooks. At high signal-to-noise ratio (SNR), the secrecy capacity is shown to be attained by simultaneously diagonalizing the channel matrices via the generalized singular value decomposition, and independently coding across the resulting parallel channels. The associated capacity is expressed in terms of the corresponding generalized singular values. It is shown that a semi-blind "masked" multi-input multi-output (MIMO) transmission strategy that sends information along directions in which there is gain to the intended receiver, and synthetic noise along directions in which there is not, can be arbitrarily far from capacity in this regime. Necessary and sufficient conditions for the secrecy capacity to be zero are provided, which simplify in the limit of many antennas when the entries of the channel matrices are independent and identically distributed. The resulting scaling laws establish that to prevent secure communication, the eavesdropper needs 3 times as many antennas as the sender and intended receiver have jointly, and that the optimimum division of antennas between sender and intended receiver is in the ratio of 2:1.Comment: To Appear, IEEE Trans. Information Theor

    Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs

    Full text link
    Optimal power allocation for orthogonal frequency division multiplexing (OFDM) wiretap channels with Gaussian channel inputs has already been studied in some previous works from an information theoretical viewpoint. However, these results are not sufficient for practical system design. One reason is that discrete channel inputs, such as quadrature amplitude modulation (QAM) signals, instead of Gaussian channel inputs, are deployed in current practical wireless systems to maintain moderate peak transmission power and receiver complexity. In this paper, we investigate the power allocation and artificial noise design for OFDM wiretap channels with discrete channel inputs. We first prove that the secrecy rate function for discrete channel inputs is nonconcave with respect to the transmission power. To resolve the corresponding nonconvex secrecy rate maximization problem, we develop a low-complexity power allocation algorithm, which yields a duality gap diminishing in the order of O(1/\sqrt{N}), where N is the number of subcarriers of OFDM. We then show that independent frequency-domain artificial noise cannot improve the secrecy rate of single-antenna wiretap channels. Towards this end, we propose a novel time-domain artificial noise design which exploits temporal degrees of freedom provided by the cyclic prefix of OFDM systems {to jam the eavesdropper and boost the secrecy rate even with a single antenna at the transmitter}. Numerical results are provided to illustrate the performance of the proposed design schemes.Comment: 12 pages, 7 figures, accepted by IEEE Transactions on Wireless Communications, Jan. 201

    Semantically Secure Lattice Codes for Compound MIMO Channels

    Get PDF
    We consider compound multi-input multi-output (MIMO) wiretap channels where minimal channel state information at the transmitter (CSIT) is assumed. Code construction is given for the special case of isotropic mutual information, which serves as a conservative strategy for general cases. Using the flatness factor for MIMO channels, we propose lattice codes universally achieving the secrecy capacity of compound MIMO wiretap channels up to a constant gap (measured in nats) that is equal to the number of transmit antennas. The proposed approach improves upon existing works on secrecy coding for MIMO wiretap channels from an error probability perspective, and establishes information theoretic security (in fact semantic security). We also give an algebraic construction to reduce the code design complexity, as well as the decoding complexity of the legitimate receiver. Thanks to the algebraic structures of number fields and division algebras, our code construction for compound MIMO wiretap channels can be reduced to that for Gaussian wiretap channels, up to some additional gap to secrecy capacity.Comment: IEEE Trans. Information Theory, to appea
    corecore