4 research outputs found

    Antenna Array Design for LOS-MIMO and Gigabit Ethernet Switch-Based Gbps Radio System

    Get PDF
    The high spectrum efficiency of multiple-input multiple-output (MIMO) transmission traditionally depends on the high multiplexing gain in rich scattering environments, which will not always hold in the line-of-sight (LOS) environments, especially at higher microwave frequency band. In this paper, a novel antenna array design rule is proposed to guarantee full multiplexing gain for LOS-MIMO systems with one- or two-dimensional antenna arrays in LOS scenarios, and the strict perpendicular constraint is released in the two-dimensional case. The minimum antenna array area and the performance sensitivity to the area error are also obtained to guide the practical system design. Then, a demo MIMO-OFDM system with the designed square antenna array at 15 GHz carrier is implemented on a novel Gigabit Ethernet (GE) switch-based software defined radio (SDR) platform, which combines the hardware accelerating units (HAUs) with the general-purpose processors (GPPs). The field evaluation results show that the system throughput and spectrum efficiency are greater than 1 Gbps and 15 bps/Hz, respectively. To the best of our knowledge, it is the first time to demonstrate the Gbps LOS-MIMO-OFDM system at such microwave bands in the world, which can be a successful design example for the next generation wireless backhaul or fixed wireless access

    Intercarrier Interference in OFDM: A General Model for Transmissions in Mobile Environments with Imperfect Synchronization

    Get PDF
    Intercarrier Interference (ICI) is an impairment well known to degrade performance of Orthogonal Frequency Division Multiplexing (OFDM) transmissions. It arises from carrier frequency offsets (CFOs), from the Doppler spread due to channel time-variation and, to a lesser extent, from sampling frequency offsets (SFOs). Literature reports several models of ICI due to each kind of impairment. Some studies describe ICI due to two of the three impairments, but so far no general model exists to describe the joint effect of all three impairments together. Furthermore, most available models involve some level of approximation, and the diversity of approaches makes it cumbersome to compare power levels of the different kinds of ICI. In this work, we present a general and mathematically exact model for the ICI stemming from the joint effect of the three impairments mentioned. The model allows for a vis-a-vis comparison of signal-to-ICI ratios (SIRs) caused by each impairment. Our result was validated by simulations. An analysis of ICI in IEEE-802.16e-type transmissions shows that during steady-state tracking and at speeds below 150 km/h, SIR due to CFO is typically in the range between 25 dB and 35 dB, SIR due to Doppler spread is larger than 25 dB, and ICI due to SFO is negligible

    Sparse RF Lens Antenna Array Design for AoA Estimation in Wideband Systems: Placement Optimization and Performance Analysis

    Full text link
    In this paper, we propose a novel architecture for a lens antenna array (LAA) designed to work with a small number of antennas and enable angle-of-arrival (AoA) estimation for advanced 5G vehicle-to-everything (V2X) use cases that demand wider bandwidths and higher data rates. We derive a received signal in terms of optical analysis to consider the variability of the focal region for different carrier frequencies in a wideband multi-carrier system. By taking full advantage of the beam squint effect for multiple pilot signals with different frequencies, we propose a novel reconfiguration of antenna array (RAA) for the sparse LAA and a max-energy antenna selection (MS) algorithm for the AoA estimation. In addition, this paper presents an analysis of the received power at the single antenna with the maximum energy and compares it to simulation results. In contrast to previous studies on LAA that assumed a large number of antennas, which can require high complexity and hardware costs, the proposed RAA with MS estimation algorithm is shown meets the requirements of 5G V2X in a vehicular environment while utilizing limited RF hardware and has low complexity.Comment: 15 pages, 10 figure

    Physical and Link Layer Implications in Vehicle Ad Hoc Networks

    Get PDF
    Vehicle Ad hoc Networks (V ANET) have been proposed to provide safety on the road and deliver road traffic information and route guidance to drivers along with commercial applications. However the challenges facing V ANET are numerous. Nodes move at high speeds, road side units and basestations are scarce, the topology is constrained by the road geometry and changes rapidly, and the number of nodes peaks suddenly in traffic jams. In this thesis we investigate the physical and link layers of V ANET and propose methods to achieve high data rates and high throughput. For the physical layer, we examine the use of Vertical BLAST (VB LAST) systems as they provide higher capacities than single antenna systems in rich fading environments. To study the applicability of VB LAST to VANET, a channel model was developed and verified using measurement data available in the literature. For no to medium line of sight, VBLAST systems provide high data rates. However the performance drops as the line of sight strength increases due to the correlation between the antennas. Moreover, the performance of VBLAST with training based channel estimation drops as the speed increases since the channel response changes rapidly. To update the channel state information matrix at the receiver, a channel tracking algorithm for flat fading channels was developed. The algorithm updates the channel matrix thus reducing the mean square error of the estimation and improving the bit error rate (BER). The analysis of VBLAST-OFDM systems showed they experience an error floor due to inter-carrier interference (lCI) which increases with speed, number of antennas transmitting and number of subcarriers used. The update algorithm was extended to VBLAST -OFDM systems and it showed improvements in BER performance but still experienced an error floor. An algorithm to equalise the ICI contribution of adjacent subcarriers was then developed and evaluated. The ICI equalisation algorithm reduces the error floor in BER as more subcarriers are equalised at the expense of more hardware complexity. The connectivity of V ANET was investigated and it was found that for single lane roads, car densities of 7 cars per communication range are sufficient to achieve high connectivity within the city whereas 12 cars per communication range are required for highways. Multilane roads require higher densities since cars tend to cluster in groups. Junctions and turns have lower connectivity than straight roads due to disconnections at the turns. Although higher densities improve the connectivity and, hence, the performance of the network layer, it leads to poor performance at the link layer. The IEEE 802.11 p MAC layer standard under development for V ANET uses a variant of Carrier Sense Multiple Access (CSMA). 802.11 protocols were analysed mathematically and via simulations and the results prove the saturation throughput of the basic access method drops as the number of nodes increases thus yielding very low throughput in congested areas. RTS/CTS access provides higher throughput but it applies only to unicast transmissions. To overcome the limitations of 802.11 protocols, we designed a protocol known as SOFT MAC which combines Space, Orthogonal Frequency and Time multiple access techniques. In SOFT MAC the road is divided into cells and each cell is allocated a unique group of subcarriers. Within a cell, nodes share the available subcarriers using a combination of TDMA and CSMA. The throughput analysis of SOFT MAC showed it has superior throughput compared to the basic access and similar to the RTS/CTS access of 802.11
    corecore